Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38947068

ABSTRACT

Gastroesophageal adenocarcinoma (GEAC) poses a significant challenge due to its poor prognosis and limited treatment options. Recently, Cancer/testis antigens (CTAs) have emerged as potential therapy targets due to their high expression in tumor cells and their immunogenic nature. We aimed to explore the expression and co-expression of CTAs in GEAC. We analyzed 63 GEAC patients initially and validated our findings in 329 patients from The Cancer Genome Atlas (TCGA) database. CTA expression was measured after RNA sequencing, while clinical information, including survival outcomes and treatment details, was collected from an institutional database. Co-expression patterns among CTAs were determined using Pearson correlation analysis. The majority of the study cohort were male (87%), Caucasian (94%), and had stage IV disease (64%). CTAs were highly prevalent, ranging from 58-19%. The MAGE gene family showed the highest expression, consistent across both cohorts. The correlation matrix revealed a distinct cluster of significantly co-expressed genes, including MAGEA3, NY-ESO-1, and others (0.27 ≤ r ≤ 0.73). Survival analysis revealed that individual CTAs were associated with poorer survival outcomes in patients not receiving immunotherapy while showing potential for improved survival in those undergoing immunotherapy, although these findings lacked robust reliability. Our study provides a comprehensive characterization of CTA expression and co-expression in GEAC. The strong correlation among CTAs like MAGE, NY-ESO-1, and GAGE suggests a potential for therapies targeting multiple CTAs simultaneously. Further research, including prospective trials, is warranted to assess the prognostic value of CTAs and their suitability as therapeutic targets.

2.
Article in English | MEDLINE | ID: mdl-39019152

ABSTRACT

OBJECTIVE: Lung cancer remains a major cause of mortality worldwide, necessitating further understanding of carcinogenesis and its driving factors, including those impacted by sex-dependent variables. We hypothesized that sex-specific lung immune composition may contribute to a greater risk of lung cancer in females. METHODS: Data from 1056 lung cancer screenings were examined for an association between sex and lung cancer risk using time-to-event analyses. Immune profiling by flow cytometry was performed on male and female lungs of three independent mouse models: non-tumor bearing, K-ras mutated, and urethane-exposed carcinogenic. A comparable analysis was performed on human bronchoalveolar lavage samples (n = 81) from lung cancer patients. RESULTS: Of the high-risk screening cohort examined, 60 patients (5.7%) developed lung cancer during median follow-up of 43.4 months. Multivariable stepwise modeling retained female sex (hazard ratio 1.56, P < 0.01) and age (P < 0.01) as prognostic indicators for lung cancer development. Female lung immune profiles in patients included T cell phenotypes consistent with exhaustion (e.g., higher proportions of PD-1+ Ki67-; P = 0.02), an expanded pool of regulatory T cells (P = 0.03), reduced effector T cell frequencies (P = 0.008), and enhancements in suppressive myeloid populations (P = 0.02) versus males, and this is recapitulated in mouse studies. CONCLUSIONS: Female smokers display higher risk for lung cancer. In murine models and humans, female sex is associated with robust immunosuppression within the lung. Further examination of this link will be important in developing immune-based approaches to lung cancer interception and their optimal application across the sexes.

3.
Transl Lung Cancer Res ; 13(2): 362-374, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38496694

ABSTRACT

Background and Objective: A versatile biomarker, survivin, is highly expressed in proliferating cells of multiple cancers in humans and animals. It is an apoptosis-regulating protein, engaging in a cascade of reactions that involve several other genes and protein interactions. Currently, researchers are investigating its therapeutic potential due to the evidence linking its overexpression to advanced-stage lung cancer. This review is centered around examining survivin-related molecular mechanisms and its therapeutic role specifically in lung cancer. Our objective is to discuss the role of survivin in prognosis and treatment response, shedding light on immune-targeted therapies, as well as outlining future directions for survivin-based vaccines in lung cancer. Methods: The PubMed database and the United States National Library of Medicine search engine at the National Institutes of Health were searched on 24 August 2023 to identify published research studies. Searching "((((((airway [Title/Abstract]) OR (lung [Title/Abstract])) OR (pulm[Title/Abstract])) OR (bronch[Title/Abstract])) OR (nslc[Title/Abstract])) AND (((cancer[Title/Abstract]) OR (carcino[Title/Abstract])) OR (oncol[Title/Abstract]))) AND (survivin[Title/Abstract])" gave 728 results. After screening the title and abstracts and excluding the review articles 168 titles were shortlisted and full text studied. The discussions are added to relevant sections. Key Content and Findings: Survivin is a cell cycle-dependent, inhibitor of apoptosis protein that contributes to carcinogenesis, tumor vascularization, metastasis, and treatment resistance. Several treatments that impact survivin either directly or indirectly have been reported as effective in treating lung cancer. Immunity-based therapy, a novel approach known for its targeted nature and minimal side effects, is currently under investigation for lung cancer treatment. Emerging survivin-centered vaccines exhibit promising attributes in terms of safety, effectiveness, and ability to stimulate an immune response. These factors point towards a significant potential for advancing the future of lung cancer prevention and enhancing overall survival rates. Conclusions: Nuclear survivin is a potential biomarker for advanced non-small cell lung cancer. It plays a role in determining drug responsiveness and is found to be significantly elevated in cases of resistance to chemotherapy. Multiple compounds and immunization strategies have been identified to impact lung cancer cells; however, they are currently in the early stages of phase I or phase II clinical trials. The substantial promise of survivin-based immunogenicity-focused treatments warrants in-depth investigation and exploration.

SELECTION OF CITATIONS
SEARCH DETAIL
...