Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 24(5): 2237-2249, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37093622

ABSTRACT

Cationic polymers have been extensively investigated as a potential replacement for traditional antibiotics. Here, we examined the effect of molecular weight (MW) on the antimicrobial, cytotoxic, and hemolytic activity of linear polytrimethylenimine (L-PTMI). The results indicate that the biological activity of the polymer sharply increases as MW increases. Thanks to a different position of the antibacterial activity and toxicity thresholds, tuning the MW of PTMI allows one to achieve a therapeutic window between antimicrobial activity and toxicity concentrations. L-PTMI presents significantly higher antimicrobial activity against model microorganisms than linear polyethylenimine (L-PEI) when polymers with a similar number of repeating units are compared. For the derivatives of L-PTMI and L-PEI, obtained through N-monomethylation and partial N,N-dimethylation of linear polyamines, the antimicrobial activity and toxicity were both reduced; however, resulting selectivity indices were higher. Selected materials were tested against clinical isolates of pathogens from the ESKAPE group and Mycobacteria, revealing good antibacterial properties of L-PTMI against antibiotic-resistant strains of Gram-positive and Gram-negative bacteria but limited antibacterial properties against Mycobacteria.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Polymers/pharmacology , Molecular Weight , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...