Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 79: 153357, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33011631

ABSTRACT

BACKGROUND: Actaea racemosa L., also known as black cohosh, is a popular herb commonly used for the treatment of menopausal symptoms. Because of its purported estrogenic activity, black cohosh root extract (BCE) may trigger breast cancer growth. STUDY DESIGN/METHODS: The potential effects of standardized BCE and its main constituent actein on cellular growth rates and steroid hormone metabolism were investigated in estrogen receptor alpha positive (ERα+) MCF-7 and -negative (ERα-) MDA-MB-231 human breast cancer cells. Cell numbers were determined following incubation of both cell lines with the steroid hormone precursors dehydroepiandrosterone (DHEA) and estrone (E1) for 48 h, in the presence and absence of BCE or actein. Using a validated liquid chromatography-high resolution mass spectrometry assay, cell culture supernatants were simultaneously analyzed for the ten main steroids of the estrogen pathway. RESULTS: Inhibition of MCF-7 and MDA-MB-231 cell growth (up to 36.9%) was observed following treatment with BCE (1-25 µg/ml) or actein (1-50 µM). Incubation of MCF-7, but not of MDA-MB-231 cells, with DHEA and BCE caused a 20.9% reduction in DHEA-3-O-sulfate (DHEA-S) formation, leading to a concomitant increase in the androgens 4-androstene-3,17-dione (AD) and testosterone (T). Actein was shown to exert an even stronger inhibitory effect on DHEA-S formation in MCF-7 cells (up to 89.6%) and consequently resulted in 12- to 15-fold higher androgen levels compared with BCE. The formation of 17ß-estradiol (E2) and its glucuronidated and sulfated metabolites was not affected by BCE or actein after incubation with the estrogen precursor estrone (E1) in either cell line. CONCLUSIONS: The results of the present study demonstrated that actein and BCE do not promote breast cancer cell growth or influence estrogen levels. However, androgen formation was strongly stimulated by BCE and actein, which may contribute to their ameliorating effects on menopausal symptoms in women. Future studies monitoring the levels of AD and T upon BCE supplementation of patients are warranted to verify an association between BCE and endogenous androgen metabolism.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/metabolism , Cimicifuga/chemistry , Plant Extracts/pharmacology , Steroids/metabolism , Androgens/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Plant Extracts/chemistry , Plant Roots/chemistry , Saponins/pharmacology , Sulfotransferases/metabolism , Triterpenes/pharmacology
2.
Front Pharmacol ; 9: 742, 2018.
Article in English | MEDLINE | ID: mdl-30042681

ABSTRACT

The role of resveratrol (RES) in preventing breast cancer is controversial, as low concentrations may stimulate the proliferation of estrogen-receptor alpha positive (ERα+) breast cancer cells. As metabolism is the key factor in altering cellular estrogens, thereby influencing breast tumor growth, we investigated the effects of RES on the formation of estrogen metabolites, namely 4-androstene-3,17-dione (AD), dehydroepiandrosterone (DHEA), dehydroepiandrosterone-3-O-sulfate (DHEA-S), estrone (E1), estrone-3-sulfate (E1-S), 17ß-estradiol (E2), 17ß-estradiol-3-O-(ß-D-glucuronide) (E2-G), 17ß-estradiol-3-O-sulfate (E2-S), 16α-hydroxy-17ß-estradiol (estriol, E3), and testosterone (T) in ERα- MDA-MB-231 and ERα+ MCF-7 cells. Incubation of both of the cell lines with the hormone precursors DHEA and E1 revealed that sulfation and glucuronidation were preferred metabolic pathways for DHEA, E1 and E2 in MCF-7 cells, compared with in MDA-MB-231 cells, as the Vmax values were significantly higher (DHEA-S: 2873.0 ± 327.4 fmol/106 cells/h, E1-S: 30.4 ± 2.5 fmol/106 cells/h, E2-S: 24.7 ± 4.9 fmol/106 cells/h, E2-G: 7.29 ± 1.36 fmol/106 cells/h). RES therefore significantly inhibited DHEA-S, E1-S, E2-S and E2-G formation in MCF-7, but not in MDA-MB-231 cells (Kis: E2-S, 0.73 ± 0.07 µM < E1-S, 0.94 ± 0.03 µM < E2-G, 7.92 ± 0.24 µM < DHEA-S, 13.2 ± 0.2 µM). Suppression of these metabolites subsequently revealed twofold higher levels of active E2, concomitant with an almost twofold increase in MCF-7 cell proliferation, which was the most pronounced upon the addition of 5 µM RES. As the content of RES in food is relatively low, an increased risk of breast cancer progression in women is likely to only be observed following the continuous consumption of high-dose RES supplements. Further long-term human studies simultaneously monitoring free estrogens and their conjugates are therefore highly warranted to evaluate the efficacy and safety of RES supplementation, particularly in patients diagnosed with ERα+ breast cancer.

3.
Front Pharmacol ; 8: 699, 2017.
Article in English | MEDLINE | ID: mdl-29051735

ABSTRACT

The beneficial effect of dietary soy food intake, especially for women diagnosed with breast cancer, is controversial, as in vitro data has shown that the soy isoflavones genistein and daidzein may even stimulate the proliferation of estrogen-receptor alpha positive (ERα+) breast cancer cells at low concentrations. As genistein and daidzein are known to inhibit key enzymes in the steroid metabolism pathway, and thus may influence levels of active estrogens, we investigated the impacts of genistein and daidzein on the formation of estrogen metabolites, namely 17ß-estradiol (E2), 17ß-estradiol-3-(ß-D-glucuronide) (E2-G), 17ß-estradiol-3-sulfate (E2-S) and estrone-3-sulfate (E1-S) in estrogen-dependent ERα+ MCF-7 cells. We found that both isoflavones were potent inhibitors of E1 and E2 sulfation (85-95% inhibition at 10 µM), but impeded E2 glucuronidation to a lesser extent (55-60% inhibition at 10 µM). The stronger inhibition of E1 and E2 sulfation compared with E2 glucuronidation was more evident for genistein, as indicated by significantly lower inhibition constants for genistein [Kis: E2-S (0.32 µM) < E1-S (0.76 µM) < E2-G (6.01 µM)] when compared with those for daidzein [Kis: E2-S (0.48 µM) < E1-S (1.64 µM) < E2-G (7.31 µM)]. Concomitant with the suppression of E1 and E2 conjugation, we observed a minor but statistically significant increase in E2 concentration of approximately 20%. As the content of genistein and daidzein in soy food is relatively low, an increased risk of breast cancer development and progression in women may only be observed following consumption of high-dose isoflavone supplements. Further long-term human studies monitoring free estrogens and their conjugates are therefore highly warranted to evaluate the potential side effects of high-dose genistein and daidzein, especially in patients diagnosed with ERα+ breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...