Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 1671, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32245968

ABSTRACT

Charge ordering creates a spontaneous array of differently charged ions and is associated with electronic phenomena such as superconductivity, colossal magnetoresistances (CMR), and multiferroicity. Charge orders are usually suppressed by chemical doping and site selective doping of a charge ordered array has not previously been demonstrated. Here we show that selective oxidation of one out of eight distinct Fe2+ sites occurs within the complex Fe2+/Fe3+ ordered structure of 2%-doped magnetite (Fe3O4), while the rest of the charge and orbitally ordered network remains intact. This 'charge order within a charge order' is attributed to the relative instability of the trimeron distortion surrounding the selected site. Our discovery suggests that similar complex charge ordered arrays could be used to provide surface sites for selective redox reactions, or for storing information by doping specific sites.

2.
Chem Commun (Camb) ; 52(27): 4864-7, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26908195

ABSTRACT

A remarkably complex electronic order of Fe(2+)/Fe(3+) charges, Fe(2+) orbital states, and weakly metal-metal bonded Fe3 units known as trimerons, was recently discovered in stoichiometric magnetite (Fe3O4) below the 125 K Verwey transition. Here, the low temperature crystal structure of a natural magnetite from a mineral sample has been determined using the same microcrystal synchrotron X-ray diffraction method. Structure refinement demonstrates that the natural sample has the same complex electronic order as pure synthetic magnetite, with only minor reductions of orbital and trimeron distortions. Chemical analysis shows that the natural sample contains dopants such as Al, Si, Mg and Mn at comparable concentrations to extraterrestrial magnetites, for example, as reported in the Tagish Lake meteorite. Much extraterrestrial magnetite exists at temperatures below the Verwey transition and hence our study demonstrates that the low temperature phase of magnetite represents the most complex long-range electronic order known to occur naturally.


Subject(s)
Ferrosoferric Oxide/chemistry , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...