Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 44(8): 2101-2104, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30985821

ABSTRACT

The separation of liquid phase and vapor phase laser-induced fluorescence (LIF) signals using tracer species suffers from uncertainties in tracer-fuel coevaporation, as well as a disparity in liquid and vapor signals. This work demonstrates the use of a simple technique, referred to as lifetime-filtered LIF, to help separate the liquid and vapor signals of fuel sprays in oxygen-free environments without the use of added tracers. This is demonstrated for a common aviation fuel, Jet-A, using prompt detection of the liquid phase and time-delayed detection of the vapor phase. A scaled liquid signal subtraction algorithm is also demonstrated for removing vapor phase signal contamination caused by the largest droplets.

2.
Opt Lett ; 43(2): 312-315, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29328268

ABSTRACT

Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow. Thus, scattering noise from outside the measurement volume is eliminated. This PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.

3.
Opt Express ; 17(16): 13792-809, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19654786

ABSTRACT

In Part I of this study [1], good agreement between experimental measurements and results from Monte Carlo simulations were obtained for the spatial intensity distribution of a laser beam propagating within a turbid environment. In this second part, the validated Monte Carlo model is used to investigate spatial and temporal effects from distinct scattering orders on image formation. The contribution of ballistic photons and the first twelve scattering orders are analyzed individually by filtering the appropriate data from simulation results. Side-scattering and forward-scattering detection geometries are investigated and compared. We demonstrate that the distribution of positions for the final scattering events is independent of particle concentration when considering a given scattering order in forward detection. From this observation, it follows that the normalized intensity distribution of each order, in both space and time, is independent of the number density of particles. As a result, the amount of transmitted information is constant for a given scattering order and is directly related to the phase function in association with the detection acceptance angle. Finally, a contrast analysis is performed in order to quantify this information at the image plane.


Subject(s)
Lasers , Models, Statistical , Computer Simulation , Light , Monte Carlo Method , Scattering, Radiation
4.
Opt Express ; 15(17): 10649-65, 2007 Aug 20.
Article in English | MEDLINE | ID: mdl-19547419

ABSTRACT

We investigate the scattering and multiple scattering of a typical laser beam (lambda = 800 nm) in the intermediate scattering regime. The turbid media used in this work are homogeneous solutions of monodisperse polystyrene spheres in distilled water. The two-dimensional distribution of light intensity is recorded experimentally, and calculated via Monte Carlo simulation for both forward and side scattering. The contribution of each scattering order to the total detected light intensity is quantified for a range of different scattering phase functions, optical depths, and detection acceptance angles. The Lorentz-Mie scattering phase function for individual particles is varied by using different sphere diameters (D = 1 and 5 mum). The optical depth of the turbid medium is varied (OD = 2, 5, and 10) by employing different concentrations of polystyrene spheres. Detection angles of theta(a) = 1.5 degrees and 8.5 degrees are considered. A novel approach which realistically models the experimental laser source is employed in this paper, and very good agreement between the experimental and simulated results is demonstrated. The data presented here can be of use to validate any other modern Monte Carlo models which generate spatially resolved light intensity distributions. Finally, an effective correction procedure to the Beer-Lambert law is proposed based on the Monte Carlo calculation of the ballistic photon contribution to the total detected light intensity.

5.
Opt Lett ; 31(7): 906-8, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16599207

ABSTRACT

We describe adaptation of ballistic imaging for the liquid core of an atomizing spray. To describe unambiguously the forces that act to break apart the liquid core in a spray, one must directly measure the force vectors themselves. It would be invaluable, therefore, to obtain velocity and acceleration data at the liquid-gas interface. We employ double-image ballistic imaging to extract velocity information through the application of image analysis algorithms. This method is shown to be effective for liquid phase droplet features within the resolution limit of the imaging system. In light of these results, it is clear that a three- or four-image implementation of this technique would allow the determination of acceleration, and by extension, information about the forces active in spray breakup.

SELECTION OF CITATIONS
SEARCH DETAIL
...