Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Cell Death Discov ; 9(1): 327, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658038

ABSTRACT

Pituitary gonadotrope cells are essential for the endocrine regulation of reproduction in vertebrates. These cells emerge early during embryogenesis, colonize the pituitary glands and organize in tridimensional networks, which are believed to be crucial to ensure proper regulation of fertility. However, the molecular mechanisms regulating the organization of gonadotrope cell population during embryogenesis remain poorly understood. In this work, we characterized the target genes of NEUROD1 and NEUROD4 transcription factors in the immature gonadotrope αT3-1 cell model by in silico functional genomic analyses. We demonstrated that NEUROD1/4 regulate genes belonging to the focal adhesion pathway. Using CRISPR/Cas9 knock-out approaches, we established a double NEUROD1/4 knock-out αT3-1 cell model and demonstrated that NEUROD1/4 regulate cell adhesion and cell motility. We then characterized, by immuno-fluorescence, focal adhesion number and signaling in the context of NEUROD1/4 insufficiency. We demonstrated that NEUROD1/4 knock-out leads to an increase in the number of focal adhesions associated with signaling abnormalities implicating the c-Src kinase. We further showed that the neurotrophin tyrosine kinase receptor 3 NTRK3, a target of NEUROD1/4, interacts physically with c-Src. Furthermore, using motility rescue experiments and time-lapse video microscopy, we demonstrated that NTRK3 is a major regulator of gonadotrope cell motility. Finally, using a Ntrk3 knock-out mouse model, we showed that NTRK3 regulates gonadotrope cells positioning in the developing pituitary, in vivo. Altogether our study demonstrates that the Neurod1/4-Ntrk3-cSrc pathway is a major actor of gonadotrope cell mobility, and thus provides new insights in the regulation of gonadotrope cell organization within the pituitary gland.

3.
Epigenetics Chromatin ; 12(1): 48, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391075

ABSTRACT

BACKGROUND: Gonadotrope lineage differentiation is a stepwise process taking place during pituitary development. The early step of gonadotrope lineage specification is characterized by the expression of the Nr5a1 transcription factor, a crucial factor for gonadotrope cell fate determination. Abnormalities affecting Nr5a1 expression lead to hypogonadotropic hypogonadism and infertility. Although significant knowledge has been gained on the signaling and transcriptional events controlling gonadotrope differentiation, epigenetic mechanisms regulating Nr5a1 expression during early gonadotrope lineage specification are still poorly understood. RESULTS: Using ATAC chromatin accessibility analyses on three cell lines recapitulating gradual stages of gonadotrope differentiation and in vivo on developing pituitaries, we demonstrate that a yet undescribed enhancer is transiently recruited during gonadotrope specification. Using CRISPR/Cas9, we show that this enhancer is mandatory for the emergence of Nr5a1 during gonadotrope specification. Furthermore, we identify a highly conserved estrogen-binding element and demonstrate that the enhancer activation is dependent upon estrogen acting through ERα. Lastly, we provide evidence that binding of ERα is crucial for chromatin remodeling of Nr5a1 enhancer and promoter, leading to RNA polymerase recruitment and transcription. CONCLUSION: This study identifies the earliest regulatory sequence involved in gonadotrope lineage specification and highlights the key epigenetic role played by ERα in this differentiation process.


Subject(s)
Estrogen Receptor alpha/metabolism , Steroidogenic Factor 1/metabolism , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Cell Differentiation , Cell Line , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA-Directed RNA Polymerases/metabolism , Enhancer Elements, Genetic , Gonadotrophs/cytology , Gonadotrophs/metabolism , Histones/metabolism , Humans , Mice , Pituitary Gland/growth & development , Pituitary Gland/metabolism , Promoter Regions, Genetic , Sequence Alignment , Steroidogenic Factor 1/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...