Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Neuron ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729150

ABSTRACT

To investigate which activity patterns in sensory cortex are relevant for perceptual decision-making, we combined two-photon calcium imaging and targeted two-photon optogenetics to interrogate barrel cortex activity during perceptual discrimination. We trained mice to discriminate bilateral whisker deflections and report decisions by licking left or right. Two-photon calcium imaging revealed sparse coding of contralateral and ipsilateral whisker input in layer 2/3, with most neurons remaining silent during the task. Activating pyramidal neurons using two-photon holographic photostimulation evoked a perceptual bias that scaled with the number of neurons photostimulated. This effect was dominated by optogenetic activation of non-coding neurons, which did not show sensory or motor-related activity during task performance. Photostimulation also revealed potent recruitment of cortical inhibition during sensory processing, which strongly and preferentially suppressed non-coding neurons. Our results suggest that a pool of non-coding neurons, selectively suppressed by network inhibition during sensory processing, can be recruited to enhance perception.

2.
Cell Rep ; 43(5): 114189, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38703365

ABSTRACT

The propagation of a seizure wavefront in the cortex divides an intensely firing seizure core from a low-firing seizure penumbra. Seizure propagation is currently thought to generate strong activation of inhibition in the seizure penumbra that leads to its decreased neuronal firing. However, the direct measurement of neuronal excitability during seizures has been difficult to perform in vivo. We used simultaneous optogenetics and calcium imaging (all-optical interrogation) to characterize real-time neuronal excitability in an acute mouse model of seizure propagation. We find that single-neuron excitability is decreased in close proximity to the seizure wavefront but becomes increased distal to the seizure wavefront. This suggests that inhibitory neurons of the seizure wavefront create a proximal circumference of hypoexcitability but do not influence neuronal excitability in the penumbra.


Subject(s)
Seizures , Animals , Seizures/physiopathology , Mice , Optogenetics , Neurons/metabolism , Calcium/metabolism , Male , Mice, Inbred C57BL , Neural Inhibition/physiology
3.
PLoS Comput Biol ; 20(4): e1012000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640119

ABSTRACT

Trial-averaged metrics, e.g. tuning curves or population response vectors, are a ubiquitous way of characterizing neuronal activity. But how relevant are such trial-averaged responses to neuronal computation itself? Here we present a simple test to estimate whether average responses reflect aspects of neuronal activity that contribute to neuronal processing. The test probes two assumptions implicitly made whenever average metrics are treated as meaningful representations of neuronal activity: Reliability: Neuronal responses repeat consistently enough across trials that they convey a recognizable reflection of the average response to downstream regions.Behavioural relevance: If a single-trial response is more similar to the average template, it is more likely to evoke correct behavioural responses. We apply this test to two data sets: (1) Two-photon recordings in primary somatosensory cortices (S1 and S2) of mice trained to detect optogenetic stimulation in S1; and (2) Electrophysiological recordings from 71 brain areas in mice performing a contrast discrimination task. Under the highly controlled settings of Data set 1, both assumptions were largely fulfilled. In contrast, the less restrictive paradigm of Data set 2 met neither assumption. Simulations predict that the larger diversity of neuronal response preferences, rather than higher cross-trial reliability, drives the better performance of Data set 1. We conclude that when behaviour is less tightly restricted, average responses do not seem particularly relevant to neuronal computation, potentially because information is encoded more dynamically. Most importantly, we encourage researchers to apply this simple test of computational relevance whenever using trial-averaged neuronal metrics, in order to gauge how representative cross-trial averages are in a given context.


Subject(s)
Neurons , Neurosciences , Somatosensory Cortex , Animals , Mice , Neurosciences/methods , Neurons/physiology , Somatosensory Cortex/physiology , Models, Neurological , Optogenetics/methods , Computational Biology/methods , Reproducibility of Results , Computer Simulation
4.
Nat Commun ; 15(1): 2456, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503769

ABSTRACT

The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.


Subject(s)
Visual Cortex , Animals , Mice , Photic Stimulation/methods , Visual Cortex/physiology , Visual Perception/physiology , Neurons/physiology
5.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328224

ABSTRACT

The goal of this protocol is to enable better characterisation of multiphoton microscopy hardware across a large user base. The scope of this protocol is purposefully limited to focus on hardware, touching on software and data analysis routines only where relevant. The intended audiences are scientists using and building multiphoton microscopes in their laboratories. The goal is that any scientist, not only those with optical expertise, can test whether their multiphoton microscope is performing well and producing consistent data over the lifetime of their system.

6.
Neurophotonics ; 11(1): 015006, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38322022

ABSTRACT

Significance: Two-photon optogenetics combines nonlinear excitation with noninvasive activation of neurons to enable the manipulation of neural circuits with a high degree of spatial precision. Combined with two-photon population calcium imaging, these approaches comprise a flexible platform for all-optical interrogation of neural circuits. However, a multitude of optical and biological factors dictate the exact precision of this approach in vivo, where it is most usefully applied. Aim: We aimed to assess how the optical point spread function (OPSF) contributes to the spatial precision of two-photon photostimulation in neurobiology. Approach: We altered the axial spread of the OPSF of the photostimulation beam using a spatial light modulator. Subsequently, calcium imaging was used to monitor the axial spatial precision of two-photon photostimulation of layer 2 neurons in the mouse neocortex. Results: We found that optical resolution is not always the limiting factor of the spatial precision of two-photon optogenetic photostimulation and, by doing so, reveal the key factors that must be improved to achieve maximal precision. Conclusions: Our results enable future work to focus on the optimal factors by providing key insight from controlled experiments in a manner not previously reported. This research can be applied to advance the state-of-the-art of all-optical interrogation, extending the toolkit for neuroscience research to achieve spatiotemporal precision at the crucial levels in which neural circuits operate.

7.
ACS Chem Neurosci ; 15(3): 456-461, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38251903

ABSTRACT

The recent development of genetically encoded fluorescent neurotransmitter biosensors has opened the door to recording serotonin (5-hydroxytryptamine, 5-HT) signaling dynamics with high temporal and spatial resolution in vivo. While this represents a significant step forward for serotonin research, the utility of available 5-HT biosensors remains to be fully established under diverse in vivo conditions. Here, we used two-photon microscopy in awake mice to examine the effectiveness of specific 5-HT biosensors for monitoring 5-HT dynamics in somatosensory cortex. Initial experiments found that whisker stimulation evoked a striking change in 5-HT biosensor signal. However, similar changes were observed in controls expressing green fluorescent protein, suggesting a potential hemodynamic artifact. Subsequent use of a second control fluorophore with emission peaks separated from the 5-HT biosensor revealed a reproducible, stimulus-locked increase in 5-HT signal. Our data highlight the promise of 5-HT biosensors for in vivo application, provided measurements are carried out with appropriate optical controls.


Subject(s)
Neocortex , Serotonin , Mice , Animals , Serotonin/metabolism , Microscopy , Neocortex/metabolism , Signal Transduction , Neurotransmitter Agents/metabolism , Mammals/metabolism
8.
Light Sci Appl ; 12(1): 270, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37953294

ABSTRACT

The resolution and contrast of microscope imaging is often affected by aberrations introduced by imperfect optical systems and inhomogeneous refractive structures in specimens. Adaptive optics (AO) compensates these aberrations and restores diffraction limited performance. A wide range of AO solutions have been introduced, often tailored to a specific microscope type or application. Until now, a universal AO solution - one that can be readily transferred between microscope modalities - has not been deployed. We propose versatile and fast aberration correction using a physics-based machine learning assisted wavefront-sensorless AO control (MLAO) method. Unlike previous ML methods, we used a specially constructed neural network (NN) architecture, designed using physical understanding of the general microscope image formation, that was embedded in the control loop of different microscope systems. The approach means that not only is the resulting NN orders of magnitude simpler than previous NN methods, but the concept is translatable across microscope modalities. We demonstrated the method on a two-photon, a three-photon and a widefield three-dimensional (3D) structured illumination microscope. Results showed that the method outperformed commonly-used modal-based sensorless AO methods. We also showed that our ML-based method was robust in a range of challenging imaging conditions, such as 3D sample structures, specimen motion, low signal to noise ratio and activity-induced fluorescence fluctuations. Moreover, as the bespoke architecture encapsulated physical understanding of the imaging process, the internal NN configuration was no-longer a "black box", but provided physical insights on internal workings, which could influence future designs.

9.
J Comp Neurol ; 531(17): 1772-1795, 2023 12.
Article in English | MEDLINE | ID: mdl-37782702

ABSTRACT

Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CLCX), this has yet to be fully accomplished. The CLCX is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are debated. To address this, we conducted a multifaceted analysis of fiber- and cytoarchitecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to CLCX, including an online reference atlas. Our data indicated four distinct subregions within CLCX, subdividing both CL and DEn into two. Additionally, we conducted brain-wide tracing of inputs to CLCX using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of CLCX and its subregions. Myelinated fibers were abundant dorsally in CL but absent ventrally, whereas PV expressing fibers occupied the entire CL. CB staining revealed a central gap within CL, also visible anterior to the striatum. The Nr2f2, Npsr1, and Cplx3 genes expressed specifically within different subregions of the CLCX, and Rprm helped delineate the CL-insular border. Furthermore, cells in CL projecting to the retrosplenial cortex were located within the myelin sparse area. By combining own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.


Mice are a highly tractable model for studying the claustrum complex (CLCX). However, without a consensus on how to delineate the CLCX in rodents, comparing results between studies is challenging. It is therefore important to expand our anatomical knowledge of the CLCX, to match the level of detail needed to study its functional properties. To improve and expand upon preexisting delineation schemes, we used the combinatorial expression of several markers to create a comprehensive guide to delineate the CLCX and its subregions, including an online reference atlas. This anatomical framework will allow researchers to anchor future experimental data into a common reference space. We demonstrated the power of this new structural framework by combining our own experimental data with digitally available data on gene expression and input connectivity of the CLCX.


Subject(s)
Claustrum , Male , Female , Mice , Animals , Claustrum/metabolism , Calbindins/metabolism , Brain/metabolism , Parvalbumins/metabolism , Rodentia/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adaptor Proteins, Signal Transducing
10.
Nat Neurosci ; 26(9): 1584-1594, 2023 09.
Article in English | MEDLINE | ID: mdl-37640911

ABSTRACT

Brains are composed of anatomically and functionally distinct regions performing specialized tasks, but regions do not operate in isolation. Orchestration of complex behaviors requires communication between brain regions, but how neural dynamics are organized to facilitate reliable transmission is not well understood. Here we studied this process directly by generating neural activity that propagates between brain regions and drives behavior, assessing how neural populations in sensory cortex cooperate to transmit information. We achieved this by imaging two densely interconnected regions-the primary and secondary somatosensory cortex (S1 and S2)-in mice while performing two-photon photostimulation of S1 neurons and assigning behavioral salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation but also by the variability of S1 neural activity. Therefore, maximizing the signal-to-noise ratio of the stimulus representation in cortex relative to the noise or variability is critical to facilitate activity propagation and perception.


Subject(s)
Brain , Neurons , Animals , Mice , Parietal Lobe , Photons , Perception
11.
Cereb Cortex ; 33(7): 3944-3959, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36104852

ABSTRACT

The claustrum is known for its extensive connectivity with many other forebrain regions, but its elongated shape and deep location have made further study difficult. We have sought to understand when mouse claustrum neurons are born, where they are located in developing brains, and when they develop their widespread connections to the cortex. We established that a well-characterized parvalbumin plexus, which identifies the claustrum in adults, is only present from postnatal day (P) 21. A myeloarchitectonic outline of the claustrum can be derived from a triangular fiber arrangement from P15. A dense patch of Nurr1+ cells is present at its core and is already evident at birth. Bromodeoxyuridine birth dating of forebrain progenitors reveals that the majority of claustrum neurons are born during a narrow time window centered on embryonic day 12.5, which is later than the adjacent subplate and endopiriform nucleus. Retrograde tracing revealed that claustrum projections to anterior cingulate (ACA) and retrosplenial cortex (RSP) follow distinct developmental trajectories. Claustrum-ACA connectivity matures rapidly and reaches adult-like innervation density by P10, whereas claustrum-RSP innervation emerges later over a protracted time window. This work establishes the timeline of claustrum development and provides a framework for understanding how the claustrum is built and develops its unique connectivity.


Subject(s)
Claustrum , Mice , Animals , Basal Ganglia/physiology , Neural Pathways/physiology , Gyrus Cinguli , Neurons
12.
Trends Neurosci ; 45(9): 654-655, 2022 09.
Article in English | MEDLINE | ID: mdl-35810023

ABSTRACT

In neuroscience, the term 'causality' is used to refer to different concepts, leading to confusion. Here we illustrate some of those variations, and we suggest names for them. We then introduce four ways to enhance clarity around causality in neuroscience.


Subject(s)
Neurosciences , Causality , Humans
13.
Nat Protoc ; 17(7): 1579-1620, 2022 07.
Article in English | MEDLINE | ID: mdl-35478249

ABSTRACT

Recent advances combining two-photon calcium imaging and two-photon optogenetics with computer-generated holography now allow us to read and write the activity of large populations of neurons in vivo at cellular resolution and with high temporal resolution. Such 'all-optical' techniques enable experimenters to probe the effects of functionally defined neurons on neural circuit function and behavioral output with new levels of precision. This greatly increases flexibility, resolution, targeting specificity and throughput compared with alternative approaches based on electrophysiology and/or one-photon optogenetics and can interrogate larger and more densely labeled populations of neurons than current voltage imaging-based implementations. This protocol describes the experimental workflow for all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system (~3 h), the preparation of an indicator and opsin-expressing and task-performing animal (~3-6 weeks), the characterization of functional and photostimulation responses (~2 h per field of view) and the design and implementation of an all-optical experiment (achievable within the timescale of a normal behavioral experiment; ~3-5 h per field of view). We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy in three brain areas by using different experimental setups. This approach can in principle be adapted to any brain area to probe functional connectivity in neural circuits and investigate the relationship between neural circuit activity and behavior.


Subject(s)
Holography , Optogenetics , Animals , Brain/physiology , Calcium , Mice , Neurons/physiology , Optogenetics/methods
14.
Brain ; 145(5): 1610-1623, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35348621

ABSTRACT

The claustrum is the most densely interconnected region in the human brain. Despite the accumulating data from clinical and experimental studies, the functional role of the claustrum remains unknown. Here, we systematically review claustrum lesion studies and discuss their functional implications. Claustral lesions are associated with an array of signs and symptoms, including changes in cognitive, perceptual and motor abilities; electrical activity; mental state; and sleep. The wide range of symptoms observed following claustral lesions do not provide compelling evidence to support prominent current theories of claustrum function such as multisensory integration or salience computation. Conversely, the lesions studies support the hypothesis that the claustrum regulates cortical excitability. We argue that the claustrum is connected to, or part of, multiple brain networks that perform both fundamental and higher cognitive functions. As a multifunctional node in numerous networks, this may explain the manifold effects of claustrum damage on brain and behaviour.


Subject(s)
Claustrum , Animals , Basal Ganglia , Humans , Pain , Perception , Sleep
15.
Cereb Cortex ; 32(14): 3057-3067, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35029646

ABSTRACT

The mouse subventricular zone (SVZ) produces neurons throughout life. It is useful for mechanism discovery and is relevant for regeneration. However, the SVZ is deep, significantly restricting live imaging since current methods do not extend beyond a few hundred microns. We developed and adapted three-photon microscopy (3PM) for non-invasive deep brain imaging in live mice, but its utility in imaging the SVZ niche was unknown. Here, with fluorescent dyes and genetic labeling, we show successful 3PM imaging in the whole SVZ, extending to a maximum depth of 1.5 mm ventral to the dura mater. 3PM imaging distinguished multiple SVZ cell types in postnatal and juvenile mice. We also detected fine processes on neural stem cells interacting with the vasculature. Previous live imaging removed overlying cortical tissue or lowered lenses into the brain, which could cause inflammation and alter neurogenesis. We found that neither astrocytes nor microglia become activated in the SVZ, suggesting 3PM does not induce major damage in the niche. Thus, we show for the first time 3PM imaging of the SVZ in live mice. This strategy could be useful for intravital visualization of cell dynamics, molecular, and pathological perturbation and regenerative events.


Subject(s)
Lateral Ventricles , Neural Stem Cells , Animals , Intravital Microscopy , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/metabolism , Mice , Microscopy , Neural Stem Cells/physiology , Neurogenesis/physiology
16.
Elife ; 92020 10 26.
Article in English | MEDLINE | ID: mdl-33103656

ABSTRACT

Many theories of brain function propose that activity in sparse subsets of neurons underlies perception and action. To place a lower bound on the amount of neural activity that can be perceived, we used an all-optical approach to drive behaviour with targeted two-photon optogenetic activation of small ensembles of L2/3 pyramidal neurons in mouse barrel cortex while simultaneously recording local network activity with two-photon calcium imaging. By precisely titrating the number of neurons stimulated, we demonstrate that the lower bound for perception of cortical activity is ~14 pyramidal neurons. We find a steep sigmoidal relationship between the number of activated neurons and behaviour, saturating at only ~37 neurons, and show this relationship can shift with learning. Furthermore, activation of ensembles is balanced by inhibition of neighbouring neurons. This surprising perceptual sensitivity in the face of potent network suppression supports the sparse coding hypothesis, and suggests that cortical perception balances a trade-off between minimizing the impact of noise while efficiently detecting relevant signals.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/physiology , Pyramidal Cells/physiology , Animals , Mice , Nerve Net , Optogenetics , Single-Cell Analysis
17.
J Comp Neurol ; 528(17): 2956-2977, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32266722

ABSTRACT

The human claustrum, a major hub of widespread neocortical connections, is a thin, bilateral sheet of gray matter located between the insular cortex and the striatum. The subplate is a largely transient cortical structure that contains some of the earliest generated neurons of the cerebral cortex and has important developmental functions to establish intra- and extracortical connections. In human and macaque some subplate cells undergo regulated cell death, but some remain as interstitial white matter cells. In mouse and rat brains a compact layer is formed, Layer 6b, and it remains underneath the cortex, adjacent to the white matter. Whether Layer 6b in rodents is homologous to primate subplate or interstitial white matter cells is still debated. Gene expression patterns, such as those of Nurr1/Nr4a2, have suggested that the rodent subplate and the persistent subplate cells in Layer 6b and the claustrum might have similar origins. Moreover, the birthdates of the claustrum and Layer 6b are similarly precocious in mice. These observations prompted our speculations on the common developmental and evolutionary origin of the claustrum and the subplate. Here we systematically compare the currently available data on cytoarchitecture, evolutionary origin, gene expression, cell types, birthdates, neurogenesis, lineage and migration, circuit connectivity, and cell death of the neurons that contribute to the claustrum and subplate. Based on their similarities and differences we propose a partially common early evolutionary origin of the cells that become claustrum and subplate, a likely scenario that is shared in these cell populations across all amniotes.


Subject(s)
Biological Evolution , Claustrum/growth & development , Neocortex/growth & development , Nerve Net/growth & development , Animals , Claustrum/cytology , Humans , Neocortex/cytology , Nerve Net/cytology
18.
Nat Methods ; 15(12): 1037-1040, 2018 12.
Article in English | MEDLINE | ID: mdl-30420686

ABSTRACT

Understanding the causal relationship between neural activity and behavior requires the ability to perform rapid and targeted interventions in ongoing activity. Here we describe a closed-loop all-optical strategy for dynamically controlling neuronal activity patterns in awake mice. We rapidly tailored and delivered two-photon optogenetic stimulation based on online readout of activity using simultaneous two-photon imaging, thus enabling the manipulation of neural circuit activity 'on the fly' during behavior.


Subject(s)
Nerve Net/physiology , Neurons/physiology , Optical Imaging/methods , Optogenetics/instrumentation , Optogenetics/methods , Animals , Electric Stimulation , Female , Mice , Mice, Inbred C57BL , Signal Processing, Computer-Assisted
19.
Nat Methods ; 12(2): 140-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25532138

ABSTRACT

We describe an all-optical strategy for simultaneously manipulating and recording the activity of multiple neurons with cellular resolution in vivo. We performed simultaneous two-photon optogenetic activation and calcium imaging by coexpression of a red-shifted opsin and a genetically encoded calcium indicator. A spatial light modulator allows tens of user-selected neurons to be targeted for spatiotemporally precise concurrent optogenetic activation, while simultaneous fast calcium imaging provides high-resolution network-wide readout of the manipulation with negligible optical cross-talk. Proof-of-principle experiments in mouse barrel cortex demonstrate interrogation of the same neuronal population during different behavioral states and targeting of neuronal ensembles based on their functional signature. This approach extends the optogenetic toolkit beyond the specificity obtained with genetic or viral approaches, enabling high-throughput, flexible and long-term optical interrogation of functionally defined neural circuits with single-cell and single-spike resolution in the mouse brain in vivo.


Subject(s)
Brain/physiology , Calcium Signaling/physiology , Neurons/physiology , Optogenetics , Action Potentials/genetics , Action Potentials/physiology , Animals , Behavior, Animal/physiology , Brain/metabolism , Calcium/metabolism , Calcium Signaling/genetics , Calcium-Binding Proteins/genetics , Female , Locomotion/genetics , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , Neurons/metabolism , Opsins/genetics , Photic Stimulation , Single-Cell Analysis
20.
Nat Neurosci ; 16(7): 805-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23799473

ABSTRACT

Optogenetic approaches promise to revolutionize neuroscience by using light to manipulate neural activity in genetically or functionally defined neurons with millisecond precision. Harnessing the full potential of optogenetic tools, however, requires light to be targeted to the right neurons at the right time. Here we discuss some barriers and potential solutions to this problem. We review methods for targeting the expression of light-activatable molecules to specific cell types, under genetic, viral or activity-dependent control. Next we explore new ways to target light to individual neurons to allow their precise activation and inactivation. These techniques provide a precision in the temporal and spatial activation of neurons that was not achievable in previous experiments. In combination with simultaneous recording and imaging techniques, these strategies will allow us to mimic the natural activity patterns of neurons in vivo, enabling previously impossible 'dream experiments'.


Subject(s)
Neurons , Optogenetics , Photons , Animals , Gene Expression , Humans , Models, Animal , Nerve Net/metabolism , Nerve Net/physiology , Neurons/cytology , Neurons/physiology , Optogenetics/instrumentation , Transfection , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...