Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Autoimmun ; 3: 100065, 2020.
Article in English | MEDLINE | ID: mdl-32939449

ABSTRACT

Studies in humans and animals have demonstrated that infection with helminths (parasitic worms) is protective against a range of hyperinflammatory diseases. A number of factors limit translation into clinical use, including: potential contamination of helminths obtained from infected humans or animals, lack of batch to batch stability, and potential pathological risks derived from live worm infections. To overcome these limitations we tested whether an antigen homogenate of the non-pathogenic nematode Caenorhabditis elegans confers protection against type 1 diabetes mellitus (T1D) using the Non Obese Diabetic (NOD) mouse model. Our study demonstrates that twice weekly intraperitoneal injections of axenically cultured C. elegans antigen (aCeAg) confers substantial protection against type 1 diabetes in NOD mice. Whereas 80% of control mice (PBS-injected) developed clinical disease, only 10% of aCeAg-treated mice became diabetic. Additionally, aCeAg treated mice had significantly greater numbers of insulin-producing pancreatic islets and greater numbers of islets negative for lymphocyte infiltration. Immunological changes observed in aCeAg treated mice included increases in total IgE and total IgG1, consistent with induction of a type 2 immune response similar to that typically seen in parasitic worm infection. Although evidence suggests that helminth infections induce strong immunoregulatory signals, we did not observe significant changes in regulatory T cell numbers or in production of the regulatory cytokines TGFß and IL-10. The lack of a regulatory response may be due to our time point of observation, or perhaps the mechanism of aCeAg efficacy may differ from that of helminth infection. Discovery that antigens obtained from a non-parasitic environmental nematode replicate the protective phenotype induced by parasitic worm infections may accelerate our ability to develop nematode-derived therapies for allergy and autoimmune diseases.

2.
PLoS Pathog ; 12(5): e1005590, 2016 05.
Article in English | MEDLINE | ID: mdl-27144308

ABSTRACT

The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.


Subject(s)
Bacterial Proteins/metabolism , Cell Division/physiology , Chlamydia trachomatis/physiology , Peptidoglycan/biosynthesis , Adaptation, Physiological/physiology , Cell Wall/chemistry , Cell Wall/metabolism , Chlamydia trachomatis/chemistry , Chromatography, High Pressure Liquid , Microscopy, Confocal , Peptidoglycan/chemistry
3.
Proc Natl Acad Sci U S A ; 112(37): 11660-5, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26290580

ABSTRACT

The "chlamydial anomaly," first coined by James Moulder, describes the inability of researchers to detect or purify peptidoglycan (PG) from pathogenic Chlamydiae despite genetic and biochemical evidence and antibiotic susceptibility data that suggest its existence. We recently detected PG in Chlamydia trachomatis by a new metabolic cell wall labeling method, however efforts to purify PG from pathogenic Chlamydiae have remained unsuccessful. Pathogenic chlamydial species are known to activate nucleotide-binding oligomerization domain-containing protein 2 (NOD2) innate immune receptors by as yet uncharacterized ligands, which are presumed to be PG fragments (muramyl di- and tripeptides). We used the NOD2-dependent activation of NF-κB by C. trachomatis-infected cell lysates as a biomarker for the presence of PG fragments within specific lysate fractions. We designed a new method of muropeptide isolation consisting of a double filtration step coupled with reverse-phase HPLC fractionation of Chlamydia-infected HeLa cell lysates. Fractions that displayed NOD2 activity were analyzed by electrospray ionization mass spectrometry, confirming the presence of muramyl di- and tripeptides in Chlamydia-infected cell lysate fractions. Moreover, the mass spectrometry data of large muropeptide fragments provided evidence that transpeptidation and transglycosylation reactions occur in pathogenic Chlamydiae. These results reveal the composition of chlamydial PG and disprove the "glycanless peptidoglycan" hypothesis.


Subject(s)
Chlamydia trachomatis/chemistry , Mass Spectrometry , Peptidoglycan/chemistry , Biomarkers/metabolism , Cell Wall/chemistry , HEK293 Cells , HeLa Cells , Humans , NF-kappa B/metabolism , Peptides/chemistry , Polysaccharides/chemistry , Tandem Mass Spectrometry
4.
Infect Immun ; 82(6): 2170-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24686069

ABSTRACT

The induction of an intense inflammatory response by Neisseria gonorrhoeae and the persistence of this pathogen in the presence of innate effectors is a fascinating aspect of gonorrhea. Phosphoethanolamine (PEA) decoration of lipid A increases gonococcal resistance to complement-mediated bacteriolysis and cationic antimicrobial peptides (CAMPs), and recently we reported that wild-type N. gonorrhoeae strain FA1090 has a survival advantage relative to a PEA transferase A (lptA) mutant in the human urethral-challenge and murine lower genital tract infection models. Here we tested the immunostimulatory role of this lipid A modification. Purified lipooligosaccharide (LOS) containing lipid A devoid of the PEA modification and an lptA mutant of strain FA19 induced significantly lower levels of NF-κB in human embryonic kidney Toll-like receptor 4 (TLR4) cells and murine embryonic fibroblasts than wild-type LOS of the parent strain. Moreover, vaginal proinflammatory cytokines and chemokines were not elevated in female mice infected with the isogenic lptA mutant, in contrast to mice infected with the wild-type and complemented lptA mutant bacteria. We also demonstrated that lptA mutant bacteria were more susceptible to human and murine cathelicidins due to increased binding by these peptides and that the differential induction of NF-κB by wild-type and unmodified lipid A was more pronounced in the presence of CAMPs. This work demonstrates that PEA decoration of lipid A plays both protective and immunostimulatory roles and that host-derived CAMPs may further reduce the capacity of PEA-deficient lipid A to interact with TLR4 during infection.


Subject(s)
Cathelicidins/pharmacology , Gonorrhea/immunology , Lipid A/chemistry , Neisseria gonorrhoeae/immunology , Reproductive Tract Infections/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Cell Line, Transformed , Chemokines/metabolism , Complement System Proteins/immunology , Cytokines/metabolism , Ethanolamines , Female , Fibroblasts/drug effects , Gonorrhea/metabolism , Humans , Lipid A/immunology , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , NF-kappa B/metabolism , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/pathogenicity , Reproductive Tract Infections/immunology , Toll-Like Receptor 4 , Vagina/metabolism
5.
Front Microbiol ; 2: 107, 2011.
Article in English | MEDLINE | ID: mdl-21747807

ABSTRACT

Historically, animal modeling of gonorrhea has been hampered by the exclusive adaptation of Neisseria gonorrhoeae to humans. Genital tract infection can be established in female mice that are treated with 17ß-estradiol, however, and many features of experimental murine infection mimic human infection. Here we review the colonization kinetics and host response to experimental murine gonococcal infection, including mouse strain differences and evidence that IL-17 responses, toll-like receptor 4, and T regulatory cells play a role in infection. We also discuss the strengths and limitations of the mouse system and the potential of transgenic mice to circumvent host restrictions. Additionally, we review studies with genetically defined mutants that demonstrated a role for sialyltransferase and the MtrC-MtrD-MtrE active efflux pump in evading innate defenses in vivo, but not for factors hypothesized to protect against the phagocytic respiratory burst and H(2)O(2)-producing lactobacilli. Studies using estradiol-treated mice have also revealed the existence of non-host-restricted iron sources in the female genital tract and the influence of hormonal factors on colonization kinetics and selection for opacity (Opa) protein expression. Recent work by others with estradiol-treated mice that are transgenic for human carcinoembryonic adhesion molecules (CEACAMs) supports a role for Opa proteins in enhancing cellular attachment and thus reduced shedding of N. gonorrhoeae. Finally we discuss the use of the mouse model in product testing and a recently developed gonorrhea chlamydia coinfection model.

6.
Infect Immun ; 78(1): 433-40, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19901062

ABSTRACT

Acute gonorrhea in women is characterized by a mucopurulent exudate that contains polymorphonuclear leukocytes (PMNs) with intracellular gonococci. Asymptomatic infections are also common. Information on the innate response to Neisseria gonorrhoeae in women is limited to studies with cultured cells, isolated immune cells, and analyses of cervicovaginal fluids. 17beta-Estradiol-treated BALB/c mice can be experimentally infected with N. gonorrhoeae, and a vaginal PMN influx occurs in 50 to 80% of mice. Here, we compared the colonization loads and proinflammatory responses of BALB/c, C57BL/6 and C3H/HeN mice to N. gonorrhoeae. BALB/c and C57BL/6 mice were colonized at similar levels following inoculation with 10(6) CFU of N. gonorrhoeae. BALB/c, but not C57BL/6, mice exhibited a marked vaginal PMN influx. Tumor necrosis factor alpha, interleukin-6, macrophage inflammatory protein 2 (MIP-2), and keratinocyte-derived chemokine were elevated in vaginal secretions from infected BALB/c mice, but not in those from C57BL/6 mice. MIP-2 levels positively correlated with a vaginal PMN influx. In contrast to BALB/c and C57BL/6 mice, C3H/HeN mice were resistant to infection, and there was no evidence of an inflammatory response. We conclude that N. gonorrhoeae causes a productive infection in BALB/c mice that is characterized by the induction of proinflammatory cytokines and chemokines and the recruitment of PMNs. Infection of C57BL/6 mice, in contrast, is more similar to asymptomatic infection. C3H/HeN mice are inherently resistant to N. gonorrhoeae infection, and this resistance is not due to an overwhelming inflammatory response to infection. Host genetic factors can therefore impact susceptibility and the immune response to N. gonorrhoeae.


Subject(s)
Gonorrhea/genetics , Gonorrhea/immunology , Neisseria gonorrhoeae/immunology , Animals , Female , Genetic Predisposition to Disease , Immunity, Innate , Inflammation , Mice , Mice, Inbred Strains , Vagina/microbiology
7.
Infect Immun ; 74(5): 2637-50, 2006 May.
Article in English | MEDLINE | ID: mdl-16622200

ABSTRACT

Alpha-2,3-sialyltransferase (Lst) is expressed on the outer membrane of Neisseria gonorrhoeae and Neisseria meningitidis and sialylates surface lipooligosaccharide (LOS), facilitating resistance to complement-mediated killing. The enzyme is constitutively expressed from a single gene (lst) and does not undergo antigenic or phase variation. We observed that Triton X-100 extracts of N. gonorrhoeae strain F62 contain about fivefold more sialyltransferase (Stase) activity than extracts of N. meningitidis strain MC58 [symbol: see text]3 a serogroup B acapsulate mutant. We confirmed and expanded upon this observation by showing that extracts of 16 random N. gonorrhoeae isolates contain various amounts of Stase activity, but, on average, 2.2-fold-more Stase activity than extracts of 16 N. meningitidis clinical isolates, representing several serogroups and nongroupable strains. Northern and real-time reverse transcription-PCR analysis of lst transcript levels in N. gonorrhoeae and N. meningitidis revealed that N. gonorrhoeae strains express more lst transcript than N. meningitidis strains. Although transcript levels correlate with average Stase activity observed in the two species, there was not a direct correlation between lst transcript levels and Stase activity among individual isolates of each species. Comparison of lst upstream (5'lst) regions of N. gonorrhoeae and N. meningitidis revealed striking sequence differences characteristic of the two pathogens. N. gonorrhoeae 5'lst regions possess 30-bp and 13-bp elements present as single elements or as tandem repeats that exist only as single elements in the 5'lst regions of N. meningitidis isolates. In addition, the 5'lst regions of N. meningitidis strains have 105-bp transposon-like Correia elements which are absent in N. gonorrhoeae. Chromosomal N. gonorrhoeae 5'lst::lacZ translational fusions expressed 4.75 +/- 0.09-fold (n = 4) higher beta-galactosidase (beta-gal) activity than N. meningitidis 5'lst::lacZ fusions in a host-independent manner, indicating differential expression is governed at least in part by sequence variations in the 5'lst regions. Reporter fusion assays and promoter-mapping analysis revealed that N. gonorrhoeae and N. meningitidis use different promoters with different strengths to transcribe lst. In N. gonorrhoeae, a strong sigma 70 promoter 80 bp upstream of the translational start site is used to transcribe lst, whereas this promoter is inactive in N. meningitidis. In N. meningitidis, a weak sigma 70 promoter at the 3' terminus of a 105-bp Correia repeat-enclosed element 99 bp upstream of the translational start site is used to transcribe lst. We conclude that differential Stase expression between N. gonorrhoeae and N. meningitidis is due at least in part to differential lst gene transcription.


Subject(s)
Neisseria gonorrhoeae/enzymology , Neisseria meningitidis/enzymology , Sialyltransferases/genetics , Transcription, Genetic , Base Sequence , Blotting, Northern , Molecular Sequence Data , Neisseria gonorrhoeae/genetics , Neisseria meningitidis/genetics , Polymerase Chain Reaction , Promoter Regions, Genetic , Repetitive Sequences, Nucleic Acid , beta-Galactoside alpha-2,3-Sialyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...