Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Commun ; 14(1): 5472, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673914

ABSTRACT

Mycobacterium tuberculosis (Mtb) disrupts glycolytic flux in infected myeloid cells through an unclear mechanism. Flux through the glycolytic pathway in myeloid cells is inextricably linked to the availability of NAD+, which is maintained by NAD+ salvage and lactate metabolism. Using lung tissue from tuberculosis (TB) patients and myeloid deficient LDHA (LdhaLysM-/-) mice, we demonstrate that glycolysis in myeloid cells is essential for protective immunity in TB. Glycolytic myeloid cells are essential for the early recruitment of multiple classes of immune cells and IFNγ-mediated protection. We identify NAD+ depletion as central to the glycolytic inhibition caused by Mtb. Lastly, we show that the NAD+ precursor nicotinamide exerts a host-dependent, antimycobacterial effect, and that nicotinamide prophylaxis and treatment reduce Mtb lung burden in mice. These findings provide insight into how Mtb alters host metabolism through perturbation of NAD(H) homeostasis and reprogramming of glycolysis, highlighting this pathway as a potential therapeutic target.


Subject(s)
NAD , Tuberculosis , Animals , Mice , Homeostasis , Myeloid Cells , Niacinamide/pharmacology , Glycolysis , Lactate Dehydrogenase 5
2.
EMBO Mol Med ; 14(11): e16283, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36285507

ABSTRACT

Our current understanding of the spectrum of TB and COVID-19 lesions in the human lung is limited by a reliance on low-resolution imaging platforms that cannot provide accurate 3D representations of lesion types within the context of the whole lung. To characterize TB and COVID-19 lesions in 3D, we applied micro/nanocomputed tomography to surgically resected, postmortem, and paraffin-embedded human lung tissue. We define a spectrum of TB pathologies, including cavitary lesions, calcium deposits outside and inside necrotic granulomas and mycetomas, and vascular rearrangement. We identified an unusual spatial arrangement of vasculature within an entire COVID-19 lobe, and 3D segmentation of blood vessels revealed microangiopathy associated with hemorrhage. Notably, segmentation of pathological anomalies reveals hidden pathological structures that might otherwise be disregarded, demonstrating a powerful method to visualize pathologies in 3D in TB lung tissue and whole COVID-19 lobes. These findings provide unexpected new insight into the spatial organization of the spectrum of TB and COVID-19 lesions within the framework of the entire lung.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humans , Lung/diagnostic imaging , Lung/pathology , Tomography, X-Ray Computed
3.
bioRxiv ; 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34282419

ABSTRACT

The recent emergence of a novel coronavirus, SARS-CoV-2, has led to the global pandemic of the severe disease COVID-19 in humans. While efforts to quickly identify effective antiviral therapies have focused largely on repurposing existing drugs 1-4 , the current standard of care, remdesivir, remains the only authorized antiviral intervention of COVID-19 and provides only modest clinical benefits 5 . Here we show that water-soluble derivatives of α-tocopherol have potent antiviral activity and synergize with remdesivir as inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Through an artificial-intelligence-driven in silico screen and in vitro viral inhibition assay, we identified D-α-tocopherol polyethylene glycol succinate (TPGS) as an effective antiviral against SARS-CoV-2 and ß-coronaviruses more broadly that also displays strong synergy with remdesivir. We subsequently determined that TPGS and other water-soluble derivatives of α-tocopherol inhibit the transcriptional activity of purified SARS-CoV-2 RdRp and identified affinity binding sites for these compounds within a conserved, hydrophobic interface between SARS-CoV-2 nonstructural protein 7 and nonstructural protein 8 that is functionally implicated in the assembly of the SARS-CoV-2 RdRp 6 . In summary, we conclude that solubilizing modifications to α-tocopherol allow it to interact with the SARS-CoV-2 RdRp, making it an effective antiviral molecule alone and even more so in combination with remdesivir. These findings are significant given that many tocopherol derivatives, including TPGS, are considered safe for humans, orally bioavailable, and dramatically enhance the activity of the only approved antiviral for SARS-CoV-2 infection 7-9 .

4.
Antioxidants (Basel) ; 10(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530574

ABSTRACT

Excessive inflammation and tissue damage are pathological hallmarks of chronic pulmonary tuberculosis (TB). Despite decades of research, host regulation of these clinical consequences is poorly understood. A sustained effort has been made to understand the contribution of heme oxygenase-1 (HO-1) to this process. HO-1 is an essential cytoprotective enzyme in the host that controls inflammation and oxidative stress in many pathological conditions. While HO-1 levels are upregulated in animals and patients infected with Mycobacterium tuberculosis (Mtb), how it regulates host responses and disease pathology during TB remains unclear. This lack of clarity is due in part to contradictory studies arguing that HO-1 induction contributes to both host resistance as well as disease progression. In this review, we discuss these conflicting studies and the role of HO-1 in modulating myeloid cell functions during Mtb disease progression. We argue that HO-1 is a promising target for host-directed therapy to improve TB immunopathology.

5.
Front Cell Infect Microbiol ; 10: 576596, 2020.
Article in English | MEDLINE | ID: mdl-33072629

ABSTRACT

Tuberculosis (TB) was responsible for more deaths in 2019 than any other infectious agent. This epidemic is exacerbated by the ongoing development of multi-drug resistance and HIV co-infection. Recent studies have therefore focused on identifying host-directed therapies (HDTs) that can be used in combination with anti-mycobacterial drugs to shorten the duration of TB treatment and improve TB outcomes. In searching for effective HDTs for TB, studies have looked toward immunometabolism, the study of the role of metabolism in host immunity and, in particular, the Warburg effect. Across a variety of experimental paradigms ranging from in vitro systems to the clinic, studies on the role of the Warburg effect in TB have produced seemingly conflicting results and contradictory conclusions. To reconcile this literature, we take a historical approach to revisit the definition of the Warburg effect, re-examine the foundational papers on the Warburg effect in the cancer field and explore its application to immunometabolism. With a firm context established, we assess the literature investigating metabolism and immunometabolism in TB for sufficient evidence to support the role of the Warburg effect in TB immunity. The effects of the differences between animal models, species of origin of the macrophages, duration of infection and Mycobacterium tuberculosis strains used for these studies are highlighted. In addition, the shortcomings of using 2-deoxyglucose as an inhibitor of glycolysis are discussed. We conclude by proposing experimental criteria that are essential for future studies on the Warburg effect in TB to assist with the research for HDTs to combat TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/therapeutic use , Glycolysis , Macrophages , Tuberculosis/drug therapy
6.
Proc Natl Acad Sci U S A ; 117(12): 6663-6674, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32139610

ABSTRACT

The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1ß, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1ß, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.


Subject(s)
Carbon/metabolism , Cystathionine gamma-Lyase/physiology , Hydrogen Sulfide/toxicity , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/etiology , Alkynes/pharmacology , Animals , Cystathionine gamma-Lyase/antagonists & inhibitors , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Glycolysis , Hydrogen Sulfide/metabolism , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/drug effects , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Signal Transduction , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology
7.
Pathog Dis ; 76(5)2018 07 01.
Article in English | MEDLINE | ID: mdl-29873719

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.


Subject(s)
Host-Pathogen Interactions , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/physiopathology , Adaptation, Physiological , Animals , Humans , Mycobacterium tuberculosis/physiology , Oxidation-Reduction , Stress, Physiological , Tuberculosis/immunology , Tuberculosis/microbiology
8.
Fam Syst Health ; 34(4): 367-377, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27669050

ABSTRACT

INTRODUCTION: Type 2 diabetes is often comorbid with internalizing mental health disorders and associated with greater psychiatric treatment resistance. Integrating psychotherapy into primary care can help treat internalizing disorders generally. We explored whether such treatment had comparable effectiveness in patients with and without Type 2 diabetes. METHOD: Participants were 468 consecutive adults (23% male; 62% Hispanic, Mage = 41.46 years) referred by medical staff for psychotherapy appointments to address internalizing symptoms (e.g., depression). After each visit, patients completed a self-report measure and clinicians assessed patient symptom severity. These data and demographics extracted from electronic medical records were analyzed using descriptive and multilevel modeling analyses. RESULTS: Patients with and without diabetes were similar in types of internalizing disorders experienced and baseline clinician- and self-reported symptomology. Multilevel modeling suggested improvements in self-reported symptomology was comparable across patient groups; however, only patients without diabetes significantly improved according to clinician reports. DISCUSSION: Although findings suggested integrated psychotherapy resulted in comparable patient-reported reductions of internalizing symptoms, these effects were not evident in clinician reports of diabetic patients. Possible reasons for this discrepancy (e.g., reporting biases) are discussed. Integrated psychotherapy for internalizing disorders may be effective for Type 2 diabetic patients, though caution is warranted. (PsycINFO Database Record


Subject(s)
Behavioral Medicine/methods , Delivery of Health Care, Integrated/standards , Diabetes Mellitus, Type 2/psychology , Mental Disorders/therapy , Adult , Behavior Therapy , Delivery of Health Care, Integrated/classification , Depression/diagnosis , Depression/therapy , Diabetes Mellitus, Type 2/therapy , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...