Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 159: 105697, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33568330

ABSTRACT

The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.

2.
Pharmaceutics ; 12(5)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443637

ABSTRACT

The main purpose of this paper was to evaluate the impact of both high- and low-Tg polymer additives on the physical stability of an amorphous drug, sildenafil (SIL). The molecular mobility of neat amorphous SIL was strongly affected by the polymeric excipients used (Kollidon VA64 (KVA) and poly(vinylacetate) (PVAc)). The addition of KVA slowed down the molecular dynamics of amorphous SIL (antiplasticizing effect), however, the addition of PVAc accelerated the molecular motions of the neat drug (plasticizing effect). Therefore, in order to properly assess the effect of the polymer on the physical stability of SIL, the amorphous samples at both: isothermal (at constant temperature-353 K) and isochronal (at constant relaxation time-τα = 1.5 ms) conditions were compared. Our studies showed that KVA suppressed the recrystallization of amorphous SIL more efficiently than PVAc. KVA improved the physical stability of the amorphous drug, regardless of the chosen concentration. On the other hand, in the case of PVAc, a low polymer content (i.e., 25 wt.%) destabilized amorphous SIL, when stored at 353 K. Nevertheless, at high concentrations of this excipient (i.e., 75 wt.%), its effect on the amorphous pharmaceutical seemed to be the opposite. Therefore, above a certain concentration, the PVAc presence no longer accelerates the SIL recrystallization process, but inhibits it.

3.
Eur J Pharm Sci ; 136: 104947, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31170526

ABSTRACT

The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.


Subject(s)
Anilides/chemistry , Flutamide/chemistry , Nitriles/chemistry , Tosyl Compounds/chemistry , Acrylates/chemistry , Crystallization/methods , Drug Delivery Systems/methods , Drug Stability , Excipients/chemistry , Methylmethacrylate/chemistry , Polymers/chemistry , Povidone/chemistry , Solubility/drug effects
4.
Mol Pharm ; 15(9): 3969-3978, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30052449

ABSTRACT

In the case of formulations with amorphous active pharmaceutical ingredients the risk of pressure-induced recrystallization should be carefully considered. We reported here that supercooled etoricoxib (ETB), which was found as a relatively stable system with low crystallization tendency at atmospheric pressure, crystallized quickly after compression. The observed strong pressure-dependence of the induction period suggests that during compression the first step of crystallization that is nucleation may be accelerated. To overcome the experimental challenge associated with studies at elevated temperatures and high pressures we applied broadband dielectric spectroscopy. Dielectric measurements gave us detailed insight into crystallization kinetics of ETB at varying ( T, p) conditions corresponding to the supercooled liquid state of a drug. We found that pressure-induced recrystallization of supercooled ETB, constituting a serious impediment from a technological point of view, can be efficiently inhibited when amorphous solid dispersion containing ETB and polymer polyvinylpyrrolidone PVP (10% w/w) was prepared. Besides, we performed the comprehensive analysis of molecular dynamics of both systems at elevated pressure to address some fundamental issues related to the pressure sensitivity of their supercooled dynamics.


Subject(s)
Etoricoxib/chemistry , Povidone/chemistry , Calorimetry, Differential Scanning , Crystallization , Drug Stability
5.
Mol Pharm ; 15(7): 2807-2815, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29791165

ABSTRACT

Rational selection of polymers for amorphous drug stabilization is necessary for further successful development of solid dispersion technology. In this paper, we investigate the effect of polymer chain length on the inhibition of amorphous drug recrystallization. To consider this problem, we prepared a drug-polymer blend (in 10:1 drug to polymer ratio) containing bicalutamide (BIC) and polyvinylpyrrolidone (PVP) with different chain lengths K10, K30, and K90. We applied broadband dielectric spectroscopy to compare the molecular dynamics of investigated samples and thoroughly recognize their crystallization tendencies from supercooled liquid state. Despite the lack of differences in molecular dynamics, we noticed significant changes in their crystallization rates. To rationalize such behavior, we performed positron annihilation lifetime spectroscopy measurements. The results showed that the value of free volume was the highest for blend with PVP K90, which at the same time was characterized by the greatest tendency to crystallize. We postulate that the polymer chain, depending on its length, can have different configurations in the space, leading to better or worse sample stabilization. Our results highlight how important is detailed understanding of physical properties of polymers for judicious selection of the best stabilization approach.


Subject(s)
Anilides/chemistry , Excipients/chemistry , Nitriles/chemistry , Povidone/chemistry , Tosyl Compounds/chemistry , Crystallization , Dielectric Spectroscopy , Drug Stability , Molecular Dynamics Simulation , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...