Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37444886

ABSTRACT

This study investigates the impact of annealing time, temperature, and layer height on the tensile strength and dimensional change of three 3D printing materials (PLA, PETG, and carbon fiber-reinforced PETG). Samples with varying layer heights (0.1 mm, 0.2 mm, and 0.3 mm) were annealed at temperatures ranging from 60-100 °C for 30, 60, and 90 min. Tensile tests were conducted, and regression models were developed to analyze the effects of these parameters on tensile strength. The models exhibited high accuracy, with a maximum deviation of only 5% from measured validation values. The models showed that layer height has a significantly bigger influence on tensile strength than annealing time and temperature. Optimal combinations of parameters were identified for each material, with PLA performing best at 0.1 mm/60 min/90 °C and PETG and PETGCF achieving optimal tensile strength at 0.1 mm/90 min/60 °C. PETGCF demonstrated smallest dimensional change after annealing and had the best modulus of elasticity of all the materials. The study employed experimental testing and regression models to assess the results across multiple materials under consistent conditions, contributing valuable insights to the ongoing discussion on the influence of annealing in 3D-printed parts.

2.
Materials (Basel) ; 14(15)2021 07 29.
Article in English | MEDLINE | ID: mdl-34361433

ABSTRACT

Polyamide 12 (PA 22000) is a well-known material and one of the most biocompatible materials tested and used to manufacture customized medical implants by selective laser sintering technology. To optimize the implants, several research activities were considered, starting with the design and manufacture of test samples made of PA 2200 by selective laser sintering (SLS) technology, with different processing parameters and part orientations. The obtained samples were subjected to compression tests and later to SEM analyses of the fractured zones, in which we determined the microstructural properties of the analyzed samples. Finally, an evaluation of the surface roughness of the material and the possibility of improving the surface roughness of the realized parts using finite element analysis to determine the optimum contact pressure between the component made of PA 2200 by SLS and the component made of TiAl6V4 by SLM was performed.

3.
Materials (Basel) ; 14(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34443025

ABSTRACT

Mechanical behavior and characteristics of two different types of materials: cast iron with lamellar graphite EN-GJL-250 and cast iron with spheroidal graphite EN-GJS-400-15 which were cast in ceramic molds using gravitational casting method has considered in this research. The ceramic molds were obtained by 3D printing method. First, a finite element analysis was developed to determine Tresca and von Mises stresses and the deformations of the ceramic molds under an applied pressure of 25 MPa. Samples were produced by gravitational casting using two types of cast iron materials. Mechanical tests were made using samples produced from these two types of materials and microstructure analysis evaluation of fractured zones was realized by scanning electron microscopy. Obtained results were finally used for designing, developing, and producing of one 'hydraulic block' of a railway installation by the Benninger Guss company of Switzerland.

SELECTION OF CITATIONS
SEARCH DETAIL
...