Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839055

ABSTRACT

This study deals with SrAl2O4: Eu2+, Dy3+ phosphor pigments prepared by an optimized perchlorate-assisted combustion synthesis and tested for developing glow-in-the-dark safety markings. Recipes with different oxidizer/fuel ratios were designed to create an in-situ reducing-reaction atmosphere and promote Eu3+ → Eu2+ reduction, which is responsible for the specific long-lasting, green emission of the pigments. The obtained data proved the efficiency of glycine-rich mixtures (up to 200% glycine excess), which led to improved optical features, as compared to the reference stoichiometric sample. The best results in terms of emission intensity and decay time were obtained in the case of 100% glycine excess. The sample with optimum emission characteristics was successfully tested in making glow-in-the-dark coatings applied to two different substrates and using pigment concentrations between 10 and 33% weight.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745350

ABSTRACT

Iron oxide nanoparticles were synthesized starting from two aqueous extracts based on Artemisia absinthium L. leaf and stems, employing a simplest, eco-friendliness and low toxicity method-green synthesis. The nanoparticles were characterized by powder X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), X-ray fluorescence analysis (XRF), thermal analysis (TG/DSC), and scanning electron microscopy (SEM). Lack of magnetic properties and the reddish-brown color of all the samples confirms the presence of hematite as majority phase. The FTIR bands located at 435 cm-1 and 590 cm-1, are assigned to Fe-O stretching vibration from hematite, confirming the formation of α-Fe2O3 nanoparticles (NPs). The in vitro screening of the samples revealed that the healthy cell line (HaCaT) presents a good viability (above 80%) after exposure to iron oxide NPs and lack of apoptotic features, while the tumorigenic cell lines manifested a higher sensitivity, especially the melanoma cells (A375) when exposed to concentration of 500 µg/mL iron oxide NPs for 72 h. Moreover, A375 cells elicited significant apoptotic markers under these parameters (concentration of 500 µg/mL iron oxide NPs for a contact time of 72 h).

3.
Pharmaceutics ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36678632

ABSTRACT

The present study reports the successful synthesis of biocompatible magnetic iron oxide nanoparticles (MNPs) by an ecofriendly single step method, using two ethanolic extracts based on leaves of Camellia sinensis L. and Ocimum basilicum L. The effect of both green raw materials as reducing and capping agents was taken into account for the development of MNPs, as well as the reaction synthesis temperature (25 °C and 80 °C). The biological effect of the MNPs obtained from Camellia sinensis L. ethanolic extract (Cs 25, Cs 80) was compared with that of the MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80), by using two morphologically different lung cancer cell lines (A549 and NCI-H460); the results showed that the higher cell viability impairment was manifested by A549 cells after exposure to MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80). Regarding the biosafety profile of the MNPs, it was shown that the EpiAirwayTM models did not elicit important viability decrease or significant histopathological changes after treatment with none of the MNPs (Cs 25, Cs 80 and Ob 25, Ob 80), at concentrations up to 500 µg/mL.

4.
Nanomaterials (Basel) ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946316

ABSTRACT

Magnetic iron oxide nanoparticles are the most desired nanomaterials for biomedical applications due to their unique physiochemical properties. A facile single-step process for the preparation of a highly stable and biocompatible magnetic colloidal suspension based on citric-acid-coated magnetic iron oxide nanoparticles used as an effective heating source for the hyperthermia treatment of cancer cells is presented. The physicochemical analysis revealed that the magnetic colloidal suspension had a z-average diameter of 72.7 nm at 25 °C with a polydispersity index of 0.179 and a zeta potential of -45.0 mV, superparamagnetic features, and a heating capacity that was quantified by an intrinsic loss power analysis. Raman spectroscopy showed the presence of magnetite and confirmed the presence of citric acid on the surfaces of the magnetic iron oxide nanoparticles. The biological results showed that breast adenocarcinoma cells (MDA-MB-231) were significantly affected after exposure to the magnetic colloidal suspension with a concentration of 30 µg/mL 24 h post-treatment under hyperthermic conditions, while the nontumorigenic (MCF-10A) cells exhibited a viability above 90% under the same thermal setup. Thus, the biological data obtained in the present study clearly endorse the need for further investigations to establish the clinical biological potential of synthesized magnetic colloidal suspension for magnetically triggered hyperthermia.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804252

ABSTRACT

CuBi2O4 synthesized by thermolysis of a new Bi(III)-Cu(II) oxalate coordination compound, namely Bi2Cu(C2O4)4·0.25H2O, was tested through its integration within carbon nanofiber paste electrode, namely CuBi/carbon nanofiber (CNF), for the electrochemical detection of amoxicillin (AMX) in the aqueous solution. Thermal analysis and IR spectroscopy were used to characterize a CuBi2O4 precursor to optimize the synthesis conditions. The copper bismuth oxide obtained after a heating treatment of the precursor at 700 °C/1 h was investigated by an X-ray diffraction and scanning electron microscopy. The electrochemical behavior of CuBi/CNF in comparison with CNF paste electrode showed the electrocatalytic activity of CuBi2O4 toward amoxicillin detection. Two potential detections, with one at the potential value of +0.540 V/saturated calomel electrode (SCE) and the other at the potential value of -1.000 V/SCE, were identified by cyclic voltammetry, which were exploited to develop the enhanced voltammetric and/or amperometric detection protocols. Better electroanalytical performance for AMX detection was achieved for CuBi/CNF using differential-pulsed and square-wave voltammetries than others reported in the literature. Very nice results obtained through anodic and cathodic currents recorded at +0.750 V/SCE and -1.000 V/SCE in the same time period using a pseudo multiple-pulsed amperometry technique showed the great potential of the CuBi/CNF paste electrode for practical applications in amoxicillin detection in aqueous solutions.

6.
Materials (Basel) ; 13(9)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365678

ABSTRACT

The perovskite-type lanthanum ferrite, LaFeO3, has been prepared by thermal decomposition of in situ obtained lanthanum ferrioxalate compound precursor, LaFe(C2O4)3·3H2O. The oxalate precursor was synthesized through the redox reaction between 1,2-ethanediol and nitrate ion and characterized by chemical analysis, infrared spectroscopy, and thermal analysis. LaFeO3 obtained after the calcination of the precursor for at least 550-800 °C/1 h have been investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). A boron-doped diamond electrode (BDD) modified with LaFeO3 ceramic powders at 550 °C (LaFeO3/BDD) by simple immersion was characterized by cyclic voltammetry and tested for the voltammetric and amperometric detection of capecitabine (CCB), which is a cytostatic drug considered as an emerging pollutant in water. The modified electrode exhibited a complex electrochemical behaviour by several redox systems in direct relation to the electrode potential range. The results obtained by cyclic voltammetry (CV), differential-pulsed voltammetry (DPV), and multiple-pulsed amperometry proved the electrocatalytic effect to capecitabine oxidation and reduction and allowed its electrochemical detection in alkaline aqueous solution.

7.
Molecules ; 24(9)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058855

ABSTRACT

In this study Fe3O4@C matrix was obtained by combustion method and used hereafter as adsorbent for paracetamol and acetylsalicylic acid removal from aqueous solutions. The Fe3O4@C matrix was characterized by electronic microscopy, X-ray diffraction, thermal analysis, Fourier-transform infrared spectroscopy, and magnetic measurements. Two kinetic models of pseudo first-order and pseudo-second-order for both paracetamol and acetylsalicylic acid were studied. The experimental data were investigated by Langmuir, Freundlich, and Redlich-Peterson adsorption isotherm models. The adsorption followed the Redlich-Peterson and pseudo-second-order models with correlation coefficients R2 = 0.98593 and R2 = 0.99996, respectively, for the adsorption of paracetamol; for the acetylsalicylic acid, the adsorption followed the Freundlich and pseudo-second-order model, with correlation coefficients R2 = 0.99421 and R2 = 0.99977, respectively. The equilibrium was quickly reached after approximately 1h for the paracetamol adsorption and approximately 2h for acetylsalicylic acid adsorption. According to the Langmuir isotherm, the maximum adsorption capacity of the magnetic matrix was 142.01 mg·g-1 for the retention of paracetamol and 234.01 mg·g-1 for the retention of acetylsalicylic acid. The benefits of using the Fe3O4@C matrix are the low cost of synthesis and its easy and fast separation from solution by using an NdBFe magnet.


Subject(s)
Acetaminophen/chemistry , Aspirin/chemistry , Ferrosoferric Oxide/chemical synthesis , Water Pollutants, Chemical/chemistry , Adsorption , Ferrosoferric Oxide/chemistry , Kinetics , Microscopy, Electron , Models, Chemical , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Water Purification/methods , X-Ray Diffraction
8.
J Biomed Nanotechnol ; 15(5): 893-909, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30890222

ABSTRACT

Magnetic iron oxide nanoparticles (MIONPs) were placed in the spotlight lately due to their excellent biocompatibility and the possibility to tailor their magnetic properties making them useful in a plethora of bioapplications, including magnetic resonance imaging and targeted nanoplatforms for anticancer drugs delivery. The aim of the present study consisted in achieving a toxicological profile of the biocompatible colloidal suspension of iron oxide nanoparticles coated with a double layer of oleic acid (Fe3O4 @OA) obtained by combustion method by performing in vitro (on human keratinocytes-HaCaT and human and murine melanoma cells) and in ovo studies on chick chorioallantoic membrane (HET-CAM assay). The colloidal suspension obtained proved to be stable in phosphate buffer saline and the size of the nanoparticles were in the range of 30 nm, an optimum size for biomedical applications. Fe3O4 @OA colloidal suspension reduced viability of human keratinocytes only at concentrations higher than 25 µg/mL, whereas in the case of melanoma cells the effect was observed at lower doses (starting with 10 µg/mL). An interesting phenomena was detected at the highest concentration tested (50 µg/mL) to all cell lines, more precisely, a particular enucleation process associated only with Fe3O4 @OA colloidal suspension stimulation. The irritant potential data evaluated by HET-CAM assay indicated the following hierarchy: Fe3O4 < Fe3O4 @OA < OA. Our results provide relevant information regarding the mechanism of action of Fe3O4 @OA that needs elucidation by future in vitro and in vivo studies.


Subject(s)
Melanoma , Nanoparticles , Animals , Ferric Compounds , Humans , Magnetic Resonance Imaging , Magnetics , Mice , Oleic Acid
9.
Front Pharmacol ; 8: 154, 2017.
Article in English | MEDLINE | ID: mdl-28400730

ABSTRACT

The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 µg·mL-1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function.

10.
Phys Chem Chem Phys ; 18(2): 1150-7, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26661942

ABSTRACT

The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,ß)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...