Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 463(7280): 516-8, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20110996

ABSTRACT

The class of type Ic supernovae have drawn increasing attention since 1998 owing to their sparse association (only four so far) with long duration gamma-ray bursts (GRBs). Although both phenomena originate from the core collapse of a massive star, supernovae emit mostly at optical wavelengths, whereas GRBs emit mostly in soft gamma-rays or hard X-rays. Though the GRB central engine generates ultra-relativistic jets, which beam the early emission into a narrow cone, no relativistic outflows have hitherto been found in type Ib/c supernovae explosions, despite theoretical expectations and searches. Here we report radio (interferometric) observations that reveal a mildly relativistic expansion in a nearby type Ic supernova, SN 2007gr. Using two observational epochs 60 days apart, we detect expansion of the source and establish a conservative lower limit for the average apparent expansion velocity of 0.6c. Independently, a second mildly relativistic supernova has been reported. Contrary to the radio data, optical observations of SN 2007gr indicate a typical type Ic supernova with ejecta velocities approximately 6,000 km s(-1), much lower than in GRB-associated supernovae. We conclude that in SN 2007gr a small fraction of the ejecta produced a low-energy mildly relativistic bipolar radio jet, while the bulk of the ejecta were slower and, as shown by optical spectropolarimetry, mildly aspherical.

2.
Science ; 319(5865): 927-30, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18276883

ABSTRACT

Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

3.
Nature ; 439(7075): 437-40, 2006 Jan 26.
Article in English | MEDLINE | ID: mdl-16437108

ABSTRACT

In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M(o)) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5(+5.5)(-2.7) M(o) planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M(o) M-dwarf star, where M(o) refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.

4.
Nature ; 411(6841): 1002-3, 2001 Jun 28.
Article in English | MEDLINE | ID: mdl-11429581
5.
Nature ; 401(6751): 331-2, 1999 Sep 23.
Article in English | MEDLINE | ID: mdl-16862098
6.
Ann N Y Acad Sci ; 688: 321-30, 1993 Jun.
Article in English | MEDLINE | ID: mdl-26469432
SELECTION OF CITATIONS
SEARCH DETAIL
...