Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(29): e2207199, 2023 07.
Article in English | MEDLINE | ID: mdl-37021720

ABSTRACT

Optoacoustic (OA, photoacoustic) imaging synergistically combines rich optical contrast with the resolution of ultrasound within light-scattering biological tissues. Contrast agents have become essential to boost deep-tissue OA sensitivity and fully exploit the capabilities of state-of-the-art OA imaging systems, thus facilitating the clinical translation of this modality. Inorganic particles with sizes of several microns can also be individually localized and tracked, thus enabling new applications in drug delivery, microrobotics, or super-resolution imaging. However, significant concerns have been raised regarding the low bio-degradability and potential toxic effects of inorganic particles. Bio-based, biodegradable nano- and microcapsules consisting of an aqueous core with clinically-approved indocyanine green (ICG) and a cross-linked casein shell obtained in an inverse emulsion approach are introduced. The feasibility to provide contrast-enhanced in vivo OA imaging with nanocapsules as well as localizing and tracking individual larger microcapsules of 4-5 µm is demonstrated. All components of the developed capsules are safe for human use and the inverse emulsion approach is known to be compatible with a variety of shell materials and payloads. Hence, the enhanced OA imaging performance can be exploited in multiple biomedical studies and can open a route to clinical approval of agents detectable at a single-particle level.


Subject(s)
Indocyanine Green , Nanocapsules , Humans , Capsules , Emulsions , Indocyanine Green/pharmacology
2.
ACS Appl Mater Interfaces ; 13(16): 19244-19253, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33848117

ABSTRACT

Joints that connect thermoplastic polymer matrices (TPMs) and metals, which are obtained by comolding, are of growing importance in numerous applications. The overall performance of these constructs is strongly impacted by the TPM-metal interfacial strength, which can be tuned by tailoring the surface chemistry of the metal prior to the comolding process. In the present work, a model TPM-metal system consisting of poly(methyl methacrylate) (PMMA) and titanium is used to prepare comolded joints. The interfacial adhesion is quantified by wire pullout experiments. Pullout tests prior to and following surface modification are performed and analyzed. Unmodified wires show poor interfacial strength, with a work of adhesion (Ga) value of 3.8 J m-2. To enhance interfacial adhesion, a biomimetic polydopamine (PDA) layer is first deposited on titanium followed by a second layer of a poly(methyl methacrylate-co-methacrylic acid) (P(MMA-co-MAA)) copolymer prior to comolding. During processing, the MAA moieties of the copolymer thermally react with PDA, forming amide bonds, while MMA promotes the formation of secondary bonds and molecular interdigitation with the PMMA matrix. Control testing reveals that neither PDA nor the copolymer provides a substantial increase in adhesion. However, when used in combination, a significant increase in adhesion is detected. This observation indicates a pronounced synergistic effect between the two layers that strengthens the PMMA-titanium bonding. Enhanced adhesion is optimized by tuning the MMA-to-MAA ratio of the copolymer, which shows a maximum at a 24% MAA content and a greatly increased Ga value of 155 J m-2; this value corresponds to a 40-fold increase. Further growth in the Ga values at higher MAA contents is hindered by the thermal cross-linking of MAA; MAA contents above 24% restrict the formation of secondary bonds and molecular interdigitation with the PMMA chains. Our results provide new design principles to produce thermoplastic-metal comolded joints with strong interfaces.


Subject(s)
Biomimetic Materials/chemistry , Engineering , Indoles/chemistry , Metals/chemistry , Polymers/chemistry , Adhesiveness , Amides/chemistry , Polymethyl Methacrylate/chemistry
3.
ACS Appl Mater Interfaces ; 12(5): 5265-5273, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32023781

ABSTRACT

Surface topography variations of liquid crystal networks in their functional coatings provide unique properties in these systems. Chiral-nematic polymer coatings self-organize in a fingerprint texture with the molecular helices parallel to the substrate with alternating domains of molecular units with parallel and perpendicular director orientation as controlled by the concentration of a reactive chiral additive. Driven by surface-tension differences and altered by anisotropic polymerization shrinkage, the coating may form hills and valleys hundreds of nanometers in size with different molecular alignment. The director orientation in the corrugations could be controlled by monomer diffusion during polymerization. Polymerization in the presence of a dichroic dye gives topographic elevations in which the molecules are oriented along the normal. Polymerization by means of a dichroic photoinitiator gives topographic elevations in which the molecules align parallel to the surface. By balancing the monomer diffusion and anisotropic polymerization shrinkage, relatively flat surfaces are also achieved. The different surfaces exhibit distinct topographical deformations when subjected to external stimuli, such as an AC electric field. This method can be universally extended to LC polymers with other alignment configurations.

4.
Soft Matter ; 10(17): 3134-42, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24695793

ABSTRACT

Using a combination of ellipsometry and friction force microscopy, we study the reversible swelling, collapse and variation in friction properties of covalently bound poly(N-isopropylacrylamide) (PNIPAM) layers on silicon with different grafting densities in response to exposure to good solvents and co-nonsolvent mixtures. Changes in the thickness and segment density distribution of grafted films are investigated by in situ ellipsometry. Based on quantitative modelling of the ellipsometry spectra, we postulate a structural model, which assumes that collapse takes place in the contacting layer between the brush and the co-nonsolvent and the top-collapsed brushes remain hydrated in the film interior. Using the structural model derived from ellipsometry spectra, we analyse the AFM based friction force microscopy data, which were obtained by silica colloidal probes. Results show a large increase of the friction coefficient of PNIPAM grafts when the grafts swollen by water are brought in contact with co-nonsolvents. For instance, the value of the friction coefficient for a medium density brush in water is four times lower than the value observed in a water-methanol (50% v/v) mixture. This increase of friction is accompanied by an increase in adherence between the PNIPAM chains and the silica colloidal probes, and is a result of chain collapse in the graft when contacted by a co-nonsolvent mixture in agreement with the model postulated on the basis of ellipsometric characterisation. The kinetic behaviour of the collapse is assessed by measuring the temporal variation of friction in situ as a function of elapsed time following contact with the co-nonsolvent as a function of graft density. In conclusion, the effect of co-nonsolvency influenced both the thickness of the PNIPAM brushes and the tribological behavior of the brush surfaces.

5.
J Am Chem Soc ; 124(26): 7638-9, 2002 Jul 03.
Article in English | MEDLINE | ID: mdl-12083900

ABSTRACT

Chaperones are small molecules that assist in the folding of naturally occurring peptides. There are no examples of small molecules acting as chaperones in the self-assembly of synthetic noncovalent assemblies. In this communication we describe an unprecedented example of the "chaperone effect" in the noncovalent synthesis of organic nanostructures. Tetrarosette assemblies 2(3).(BuCYA)(12) form quantitatively in CHCl(3) at room temperature upon mixing tetramelamine 2 with N-butylcyanurate (BuCYA) in the presence of 5,5-diethylbarbituric acid (DEB). Without the DEB units present, only oligomeric assemblies are formed that cannot rearrange to the tetrarosettes by themselves. The DEB units act as molecular "chaperones" by preorganizing the tetramelamine units for the spontaneous assembly of the tetrarosette structure.


Subject(s)
Barbiturates/chemistry , Molecular Chaperones/chemistry , Triazines/chemistry , Hydrogen Bonding , Kinetics , Magnetic Resonance Spectroscopy , Molecular Mimicry
SELECTION OF CITATIONS
SEARCH DETAIL
...