Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e16602, 2023.
Article in English | MEDLINE | ID: mdl-38107579

ABSTRACT

The auditory brainstem response (ABR) to tone burst stimuli of thirteen frequencies ranging from 0.5 to 48 kHz was recorded in the nine-banded armadillo (Dasypus novemcinctus), the only extant member of the placental mammal superorder Xenarthra in North America. The armadillo ABR consisted of five main peaks that were visible within the first 10 ms when stimuli were presented at high intensities. The latency of peak I of the armadillo ABR increased as stimulus intensity decreased by an average of 20 µs/dB. Estimated frequency-specific thresholds identified by the ABR were used to construct an estimate of the armadillo audiogram describing the mean thresholds of the eight animals tested. The majority of animals tested (six out of eight) exhibited clear responses to stimuli from 0.5 to 38 kHz, and two animals exhibited responses to stimuli of 48 kHz. Across all cases, the lowest thresholds were observed for frequencies from 8 to 12 kHz. Overall, we observed that the armadillo estimated audiogram bears a similar pattern as those observed using ABR in members of other mammalian clades, including marsupials and later-derived placental mammals.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Xenarthra , Pregnancy , Animals , Female , Evoked Potentials, Auditory, Brain Stem/physiology , Armadillos/physiology , Placenta , Hearing Tests , Eutheria
2.
J Neurosci ; 39(34): 6684-6695, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31235643

ABSTRACT

In the present study, we investigated motor cortex (M1) and a small portion of premotor and parietal cortex using intracortical microstimulation in anesthetized capuchin monkeys. Capuchins are the only New World monkeys that have evolved an opposable thumb and use tools in the wild. Like most Old World monkeys and humans, capuchin monkeys have highly dexterous hands. We surveyed a large extent of M1 and found that ~22% of all evoked movements in M1 involved the digits, and the majority of these consisted of finger flexions and extensions. Different subtypes of movements could be identified, including opposable movements of digits 1 and 2 (D1 and D2). Interestingly, the pattern of such movements varied between animals. In one case, movements involved the adduction of the medial surface of D1 toward the lateral surface of D2, whereas in the other case, the tips of D1 and D2 came in contact. Unlike other primates examined, we also found extensive representations of the prehensile foot and tail. We propose that the manual behavioral repertoire of capuchin monkeys, which includes the use of tools in the wild, is well represented within the motor cortex in the form of muscle synergies between different body parts that compose these larger, complex behaviors.SIGNIFICANCE STATEMENT The ability to use tools is a milestone in human evolution. Capuchin monkeys are one of the few non-human primates that use tools in the wild. The present study is the first detailed exploration of the motor cortex of these primates using long-train intracortical microstimulation. Within primary motor cortex, we evoked finger movements involving flexions and extensions of multiple digits, or of the first and second digits alone. Interestingly, flexion of tail and toes could also be evoked. Together, these results suggest that the functional organization of the motor cortex represents not just muscles of the body, but muscle synergies that form the building blocks of the complex behavioral repertoire of these animals.


Subject(s)
Fingers/physiology , Hand Strength/physiology , Motor Cortex/physiology , Movement/physiology , Animals , Brain Mapping , Cebus , Female , Functional Laterality/physiology , Male , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Parietal Lobe/physiology , Thumb , Tool Use Behavior
3.
J Comp Neurol ; 527(3): 718-737, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29663384

ABSTRACT

The overarching goal of the current investigation was to examine the connections of anterior parietal area 2 and the medial portion of posterior parietal area 5 in macaque monkeys; two areas that are part of a network involved reaching and grasping in primates. We injected neuroanatomical tracers into specified locations in each field and directly related labeled cells to histologically identified cortical field boundaries. Labeled cells were counted so that the relative density of projections to areas 2 and 5 from other cortical fields could be determined. Projections to area 2 were restricted and were predominantly from other somatosensory areas of the anterior parietal cortex (areas 1, 3b, and 3a), the second somatosensory area (S2), and from medial and lateral portions of area 5 (5M and 5L respectively). On the other hand, area 5M had very broadly distributed projections from a number of cortical areas including anterior parietal areas, from primary motor cortex (M1), premotor cortex (PM), the supplementary motor area (SMA), cortex on the medial wall, and from posterior parietal areas 5L and 7b. The more restricted pattern of connections of area 2 indicates that it processes somatic inputs locally and provides proprioceptive information to area 5M. 5M, which at least partially overlaps with functionally defined area MIP, receives inputs from somatosensory (predominantly from area 2), posterior parietal and motor cortex, which could provide the substrate for representing multiple coordinate systems necessary for planning ethologically relevant movements, particularly those involving the hand.


Subject(s)
Motor Cortex/physiology , Neocortex/physiology , Nerve Net/physiology , Parietal Lobe/physiology , Animals , Macaca , Macaca mulatta , Macaca radiata , Motor Cortex/cytology , Neocortex/cytology , Nerve Net/cytology , Parietal Lobe/cytology
4.
J Neurophysiol ; 117(3): 1395-1406, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28053246

ABSTRACT

Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo (Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals.NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that the functional properties of V1 neurons emerged early in the mammalian lineage, near the time of the divergence of marsupials.


Subject(s)
Action Potentials/physiology , Armadillos/physiology , Neurons/physiology , Orientation/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Animals , Armadillos/anatomy & histology , Brain Mapping , Diffusion Tensor Imaging , Female , Functional Laterality , Geniculate Bodies/diagnostic imaging , Geniculate Bodies/physiology , Male , Photic Stimulation , Psychophysics , Visual Cortex/diagnostic imaging , Visual Pathways/diagnostic imaging , Visual Pathways/physiology
5.
Cereb Cortex ; 22(8): 1834-50, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21955920

ABSTRACT

Brodmann's area 5 has traditionally included the rostral bank of the intraparietal sulcus (IPS) as well as posterior portions of the postcentral gyrus and medial wall. However, different portions of this large architectonic zone may serve different functions related to reaching and grasping behaviors. The current study used multiunit recording techniques in anesthetized macaque monkeys to survey a large extent of the rostral bank of the IPS so that hundreds of recording sites could be used to determine the functional subdivisions and topographic organization of cortical areas in this region. We identified a lateral area on the rostral IPS that we term area 5L. Area 5L contains neurons with receptive fields on mostly the shoulder, forelimb, and digits, with no apparent representation of other body parts. Thus, there is a large magnification of the forelimb. Receptive fields for neurons in this region often contain multiple joints of the forelimb or multiple digits, which results in imprecise topography or fractures in map organization. Our results provide the first overall topographic map of area 5L obtained in individual macaque monkeys and suggest that this region is distinct from more medial portions of the IPS.


Subject(s)
Brain Mapping , Cerebral Cortex/anatomy & histology , Animals , Cerebral Cortex/physiology , Electrophysiology , Macaca
6.
Cereb Cortex ; 22(9): 1959-78, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22021916

ABSTRACT

Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed "F," possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages.


Subject(s)
Brain Mapping , Motor Cortex/anatomy & histology , Neural Pathways/anatomy & histology , Sciuridae/anatomy & histology , Animals , Motor Cortex/physiology , Neural Pathways/physiology , Sciuridae/physiology
7.
J Neurosci ; 30(39): 12918-35, 2010 Sep 29.
Article in English | MEDLINE | ID: mdl-20881111

ABSTRACT

We examined the effects of focal lesions of posterior parietal area 5 in macaque monkeys on bimanual behavior performed with and without visual guidance. The animals were trained on two reaching tasks and one tactile texture discrimination task. Task 1 simply involved reaching toward and grasping a reward from one of five well positions. Task 2 required the monkey to use both hands simultaneously to obtain a reward. The tactile texture discrimination task required the monkey to signal the roughness of a passively delivered texture using its jaw. After lesions to area 5, the monkeys showed a decrease in hand use for tasks 1 and 2 and an inability to perform task 2 in specific locations in visual space. These deficits recovered within several days. No deficits were observed in the tactile texture discrimination task or in an analgesic control monkey. Electrophysiological recordings made just before the lesion, immediately after the lesion, and 2 months after the lesion demonstrated that cortical areas just rostral to the lesioned area 5, and areas 1 and 2, were topographically reorganized and that receptive fields for neurons in these fields changed location on the body surface. These cortical map changes are correlative and may, in part, contribute to the rapid behavioral recovery observed. The mechanism for such rapid changes may be the unmasking of existing divergent and convergent thalamocortical connections that are part of the normal cortical circuitry.


Subject(s)
Denervation , Discrimination Learning/physiology , Neuronal Plasticity/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Recovery of Function/physiology , Touch Perception/physiology , Animals , Behavior, Animal/physiology , Brain Mapping/methods , Electrophysiology/methods , Macaca mulatta , Male , Nerve Net/anatomy & histology , Nerve Net/physiology , Orientation/physiology , Parietal Lobe/anatomy & histology , Sensory Receptor Cells/physiology , Space Perception/physiology
8.
Cereb Cortex ; 19(9): 2038-64, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19221145

ABSTRACT

We examined the organization and cortical projections of the somatosensory thalamus using multiunit microelectrode recording techniques in anesthetized monkeys combined with neuroanatomical tracings techniques and architectonic analysis. Different portions of the hand representation in area 3b were injected with different anatomical tracers in the same animal, or matched body part representations in parietal areas 3a, 3b, 1, 2, and areas 2 and 5 were injected with different anatomical tracers in the same animal to directly compare their thalamocortical connections. We found that the somatosensory thalamus is composed of several representations of cutaneous and deep receptors of the contralateral body. These nuclei include the ventral posterior nucleus, the ventral posterior superior nucleus, the ventral posterior inferior nucleus, and the ventral lateral nucleus. Each nucleus projects to several different cortical fields, and each cortical field receives projections from multiple thalamic nuclei. In contrast to other sensory systems, each of these somatosensory cortical fields is uniquely innervated by multiple thalamic nuclei. These data indicate that multiple inputs are processed simultaneously within and across several, "hierarchically connected" cortical fields.


Subject(s)
Afferent Pathways/cytology , Models, Anatomic , Models, Neurological , Parietal Lobe/cytology , Somatosensory Cortex/cytology , Animals , Macaca fascicularis , Macaca mulatta
9.
J Neurosci ; 27(38): 10106-15, 2007 Sep 19.
Article in English | MEDLINE | ID: mdl-17881517

ABSTRACT

Dexterous hands, used to manipulate food, tools, and other objects, are one of the hallmarks of primate evolution. However, the neural substrate of fine manual control necessary for these behaviors remains unclear. Here, we describe the functional organization of parietal cortical areas 2 and 5 in the cebus monkey. Whereas other New World monkeys can be quite dexterous, and possess a poorly developed area 5, cebus monkeys are the only New World primate known to use a precision grip, and thus have an extended repertoire of manual behaviors. Unlike other New World Monkeys, but much like the macaque monkey, cebus monkeys possess a proprioceptive cortical area 2 and a well developed area 5, which is associated with motor planning and the generation of internal body coordinates necessary for visually guided reaching, grasping, and manipulation. The similarity of these fields in cebus monkeys and distantly related macaque monkeys with similar manual abilities indicates that the range of cortical organizations that can emerge in primates is constrained, and those that emerge are the result of highly conserved developmental mechanisms that shape the boundaries and topographic organizations of cortical areas.


Subject(s)
Biological Evolution , Hand Strength/physiology , Motor Skills/physiology , Somatosensory Cortex/physiology , Animals , Brain Mapping/methods , Cebus , Hand/physiology , Parietal Lobe/physiology
10.
J Comp Neurol ; 497(3): 416-35, 2006 Jul 20.
Article in English | MEDLINE | ID: mdl-16736469

ABSTRACT

We examined the thalamocortical connections of electrophysiologically identified locations in the hand and forelimb representations in areas 3b, 1, and 5 in the New World titi monkeys (Callicebus moloch), and of area 7b/AIP. Labeled cells and terminals in the thalamus resulting from the injections were related to architectonic boundaries. As in previous studies in primates, the hand representation of area 3b has dense, restricted projections predominantly from the lateral division of the ventral posterior nucleus (VPl). Projections to area 1 were highly convergent from several thalamic nuclei including the ventral lateral nucleus (VL), anterior pulvinar (PA), VPl, and the superior division of the ventral posterior nucleus (VPs). In cortex immediately caudal to area 1, what we term area 5, thalamocortical connections were also highly convergent and predominantly from nuclei of the thalamus associated with motor, visual, or somatic processing such as VL, the medial pulvinar (PM), and PA, respectively; with moderate projections from VP, central lateral nucleus (CL), lateral posterior nucleus (LP), and VPs. Finally, thalamocortical connections of area 7b/AIP were from a range of nuclei including PA, PM, LP/LD, VL, CL, PL, and CM. The current data support two conclusions drawn from previous studies in titi monkeys and other primates. First, cortex caudal to area 1 in New World monkeys is more like area 5 than area 2. Second, the presence of thalamic input to area 5 from both motor nuclei and somatosensory nuclei of the thalamus, suggests that area 5 could be considered a highly specialized sensorimotor area.


Subject(s)
Brain Mapping , Cebidae/anatomy & histology , Neural Pathways/cytology , Parietal Lobe/cytology , Thalamus/cytology , Animals , Cebidae/physiology , Cercopithecidae/anatomy & histology , Cercopithecidae/physiology , Forelimb/innervation , Forelimb/physiology , Hand/innervation , Hand/physiology , Neural Pathways/physiology , Parietal Lobe/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Thalamus/physiology
11.
Cereb Cortex ; 15(12): 1938-63, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15758196

ABSTRACT

We used multiunit electrophysiological recording techniques to examine the topographic organization of somatosensory area 3b and cortex posterior to area 3b, including area 1 and the presumptive area 5, in the New World titi monkey, Callicebus moloch. We also examined the ipsilateral and contralateral connections of these fields, as well as those in a region of cortex that appeared to be similar to both area 7b and the anterior intraparietal area (7b/AIP) described in macaque monkeys. All data were combined with architectonic analysis to generate comprehensive reconstructions. These studies led to several observations. First, area 1 in titi monkeys is not as precisely organized in terms of topographic order and receptive field size as is area 1 in macaque monkeys and a few New World monkeys. Second, cortex caudal to area 1 in titi monkeys is dominated by the representation of the hand and forelimb, and contains neurons that are often responsive to visual stimulation as well as somatic stimulation. This organization is more like area 5 described in macaque monkeys than like area 2. Third, ipsilateral and contralateral cortical connections become more broadly distributed away from area 3b towards the posterior parietal cortex. Specifically, area 3b has a relatively restricted pattern of connectivity with adjacent somatosensory fields 3a, 1, S2 and PV; area 1 has more broadly distributed connections than area 3b; and the presumptive areas 5 and 7b/AIP have highly diverse connections, including connections with motor and premotor cortex, extrastriate visual areas, auditory areas and somatosensory areas of the lateral sulcus. Fourth, the hand representation of the presumptive area 5 has dense callosal connections. Our results, together with previous studies in other primates, suggest that anterior parietal cortex has expanded in some primate lineages, perhaps in relation to manual abilities, and that the region of cortex we term area 5 is involved in integrating somatic inputs with the motor system and across hemispheres. Such connections could form the substrate for intentional reaching, grasping and intermanual transfer of information necessary for bilateral coordination of the hands.


Subject(s)
Cebidae/anatomy & histology , Parietal Lobe/cytology , Somatosensory Cortex/cytology , Visual Cortex/cytology , Visual Pathways/cytology , Animals , Brain Mapping , Corpus Callosum/cytology , Electrophysiology , Functional Laterality , Hand/innervation , Species Specificity
12.
J Comp Neurol ; 467(3): 418-34, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-14608603

ABSTRACT

Area TPO in the upper bank of the superior temporal sulcus (STS) of macaque monkeys is thought to correspond to the superior temporal polysensory (STP) cortex, but has been shown to have neurochemical/connectional subdivisions. To examine directly the relationship between chemoarchitecture and cortical connections of area TPO, the upper bank of the STS was sectioned tangential to the cortical surface. Three subdivisions of area TPO (TPOr, TPOi, and TPOc) were examined with cytochrome oxidase (CO) histochemistry and neurofilament protein (NF) immunoreactivity and architectonic patterns were compared with connections on the same or adjacent sections. Area TPOc, which may partly overlap with the location of the medial superior temporal area MST, exhibited regular patchy staining for CO in layers III/IV and a complementary pattern in the NF stain. Area TPOr, but not TPOi, also had a patchy pattern of complementary staining in CO and neurofilament similar to TPOc, although not as distinct. Tracer injections within cortex including the frontal eye fields (areas 46 and 8) labeled areas TPOc, TPOi, and TPOr. The caudal inferior parietal lobule (IPL) projected to all three areas. The projections from prearcuate and posterior parietal cortices showed both overlap and nonoverlap with each other within TPOc, TPOi, and TPOr. Projections were to all neurochemical components within the subdivisions of TPO. The findings support the parcellation of area TPO into three subdivisions and extend findings of chemoarchitectonic modules within high-order association cortices.


Subject(s)
Macaca mulatta/anatomy & histology , Macaca mulatta/physiology , Temporal Lobe/chemistry , Temporal Lobe/physiology , Animals , Cerebral Cortex/anatomy & histology , Cerebral Cortex/chemistry , Cerebral Cortex/physiology , Neural Pathways/anatomy & histology , Neural Pathways/chemistry , Neural Pathways/physiology , Temporal Lobe/anatomy & histology
13.
J Comp Neurol ; 462(4): 382-99, 2003 Aug 04.
Article in English | MEDLINE | ID: mdl-12811808

ABSTRACT

To gain insight into how cortical fields process somatic inputs and ultimately contribute to complex abilities such as tactile object perception, we examined the pattern of connections of two areas in the lateral sulcus of macaque monkeys: the second somatosensory area (S2), and the parietal ventral area (PV). Neuroanatomical tracers were injected into electrophysiologically and/or architectonically defined locations, and labeled cell bodies were identified in cortex ipsilateral and contralateral to the injection site. Transported tracer was related to architectonically defined boundaries so that the full complement of connections of S2 and PV could be appreciated. Our results indicate that S2 is densely interconnected with the primary somatosensory area (3b), PV, and area 7b of the ipsilateral hemisphere, and with S2, 7b, and 3b in the opposite hemisphere. PV is interconnected with areas 3b and 7b, with the parietal rostroventral area, premotor cortex, posterior parietal cortex, and with the medial auditory belt areas. Contralateral connections were restricted to PV in the opposite hemisphere. These data indicate that S2 and PV have unique and overlapping patterns of connections, and that they comprise part of a network that processes both cutaneous and proprioceptive inputs necessary for tactile discrimination and recognition. Although more data are needed, these patterns of interconnections of cortical fields and thalamic nuclei suggest that the somatosensory system may not be segregated into two separate streams of information processing, as has been hypothesized for the visual system. Rather, some fields may be involved in a variety of functions that require motor and sensory integration.


Subject(s)
Macaca mulatta , Parietal Lobe/anatomy & histology , Somatosensory Cortex/anatomy & histology , Animals , Electrophysiology , Histological Techniques , Neural Pathways/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...