Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Sci Rep ; 14(1): 9563, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671043

ABSTRACT

Extracting longitudinal image quantitative data, known as delta-radiomics, has the potential to capture changes in a patient's anatomy throughout the course of radiation treatment for prostate cancer. Some of the major challenges of delta-radiomics studies are contouring the structures for individual fractions and accruing patients' data in an efficient manner. The manual contouring process is often time consuming and would limit the efficiency of accruing larger sample sizes for future studies. The problem is amplified because the contours are often made by highly trained radiation oncologists with limited time to dedicate to research studies of this nature. This work compares the use of automated prostate contours generated using a deformable image-based algorithm to make predictive models of genitourinary and changes in total international prostate symptom score in comparison to manually contours for a cohort of fifty patients. Area under the curve of manual and automated models were compared using the Delong test. This study demonstrated that the delta-radiomics models were similar for both automated and manual delta-radiomics models.


Subject(s)
Cone-Beam Computed Tomography , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Cone-Beam Computed Tomography/methods , Algorithms , Aged , Middle Aged , Radiation Injuries/etiology , Radiomics
2.
Radiother Oncol ; 191: 110064, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135187

ABSTRACT

BACKGROUND AND PURPOSE: Radiation dose escalation may improve local control (LC) and overall survival (OS) in select pancreatic ductal adenocarcinoma (PDAC) patients. We prospectively evaluated the safety and efficacy of ablative stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) for borderline resectable (BRPC) and locally advanced pancreas cancer (LAPC). The primary endpoint of acute grade ≥ 3 gastrointestinal (GI) toxicity definitely related to SMART was previously published with median follow-up (FU) 8.8 months from SMART. We now present more mature outcomes including OS and late toxicity. MATERIALS AND METHODS: This prospective, multi-center, single-arm open-label phase 2 trial (NCT03621644) enrolled 136 patients (LAPC 56.6 %; BRPC 43.4 %) after ≥ 3 months of any chemotherapy without distant progression and CA19-9 ≤ 500 U/mL. SMART was delivered on a 0.35 T MR-guided system prescribed to 50 Gy in 5 fractions (biologically effective dose10 [BED10] = 100 Gy). Elective coverage was optional. Surgery and chemotherapy were permitted after SMART. RESULTS: Mean age was 65.7 years (range, 36-85), induction FOLFIRINOX was common (81.7 %), most received elective coverage (57.4 %), and 34.6 % had surgery after SMART. Median FU was 22.9 months from diagnosis and 14.2 months from SMART, respectively. 2-year OS from diagnosis and SMART were 53.6 % and 40.5 %, respectively. Late grade ≥ 3 toxicity definitely, probably, or possibly attributed to SMART were observed in 0 %, 4.6 %, and 11.5 % patients, respectively. CONCLUSIONS: Long-term outcomes from the phase 2 SMART trial demonstrate encouraging OS and limited severe toxicity. Additional prospective evaluation of this novel strategy is warranted.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Humans , Aged , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Radiotherapy Planning, Computer-Assisted , Radiosurgery/adverse effects
3.
PLoS One ; 18(8): e0289786, 2023.
Article in English | MEDLINE | ID: mdl-37549175

ABSTRACT

Traumatic brain injury (TBI) is a worldwide problem that results in death or disability for millions of people every year. Progressive neurological complications and long-term impairment can significantly disrupt quality of life. We demonstrated the feasibility of multiple magnetic resonance imaging (MRI) modalities to investigate and predict aberrant changes and progressive atrophy of gray and white matter tissue at several acute and chronic time points after moderate and severe parasagittal fluid percussion TBI. T2-weighted imaging, diffusion tensor imaging (DTI), and perfusion weighted imaging (PWI) were performed. Adult Sprague-Dawley rats were imaged sequentially on days 3, 14, and 1, 4, 6, 8, and 12 months following surgery. TBI caused dynamic white and gray matter alterations with significant differences in DTI values and injury-induced alterations in cerebral blood flow (CBF) as measured by PWI. Regional abnormalities after TBI were observed in T2-weighted images that showed hyperintense cortical lesions and significant cerebral atrophy in these hyperintense areas 1 year after TBI. Temporal DTI values indicated significant injury-induced changes in anisotropy in major white matter tracts, the corpus callosum and external capsule, and in gray matter, the hippocampus and cortex, at both early and chronic time points. These alterations were primarily injury-severity dependent with severe TBI exhibiting a greater degree of change relative to uninjured controls. PWI evaluating CBF revealed sustained global reductions in the cortex and in the hippocampus at most time points in an injury-independent manner. We next sought to investigate prognostic correlations across MRI metrics, timepoints, and cerebral pathology, and found that diffusion abnormalities and reductions in CBF significantly correlated with specific vulnerable structures at multiple time points, as well as with the degree of cerebral atrophy observed 1 year after TBI. This study further supports using DTI and PWI as a means of prognostic imaging for progressive structural changes after TBI and emphasizes the progressive nature of TBI damage.


Subject(s)
Brain Injuries, Traumatic , White Matter , Rats , Animals , Diffusion Tensor Imaging , Quality of Life , Rats, Sprague-Dawley , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology , Cerebrovascular Circulation , Atrophy/pathology , Brain/pathology
4.
Int J Radiat Oncol Biol Phys ; 117(4): 799-808, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37210048

ABSTRACT

PURPOSE: Magnetic resonance (MR) image guidance may facilitate safe ultrahypofractionated radiation dose escalation for inoperable pancreatic ductal adenocarcinoma. We conducted a prospective study evaluating the safety of 5-fraction Stereotactic MR-guided on-table Adaptive Radiation Therapy (SMART) for locally advanced (LAPC) and borderline resectable pancreatic cancer (BRPC). METHODS AND MATERIALS: Patients with LAPC or BRPC were eligible for this multi-institutional, single-arm, phase 2 trial after ≥3 months of systemic therapy without evidence of distant progression. Fifty gray in 5 fractions was prescribed on a 0.35T MR-guided radiation delivery system. The primary endpoint was acute grade ≥3 gastrointestinal (GI) toxicity definitely attributed to SMART. RESULTS: One hundred thirty-six patients (LAPC 56.6%, BRPC 43.4%) were enrolled between January 2019 and January 2022. Mean age was 65.7 (36-85) years. Head of pancreas lesions were most common (66.9%). Induction chemotherapy mostly consisted of (modified)FOLFIRINOX (65.4%) or gemcitabine/nab-paclitaxel (16.9%). Mean CA19-9 after induction chemotherapy and before SMART was 71.7 U/mL (0-468). On-table adaptive replanning was performed for 93.1% of all delivered fractions. Median follow-up from diagnosis and SMART was 16.4 and 8.8 months, respectively. The incidence of acute grade ≥3 GI toxicity possibly or probably attributed to SMART was 8.8%, including 2 postoperative deaths that were possibly related to SMART in patients who had surgery. There was no acute grade ≥3 GI toxicity definitely related to SMART. One-year overall survival from SMART was 65.0%. CONCLUSIONS: The primary endpoint of this study was met with no acute grade ≥3 GI toxicity definitely attributed to ablative 5-fraction SMART. Although it is unclear whether SMART contributed to postoperative toxicity, we recommend caution when pursuing surgery, especially with vascular resection after SMART. Additional follow-up is ongoing to evaluate late toxicity, quality of life, and long-term efficacy.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Humans , Aged , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prospective Studies , Radiotherapy Planning, Computer-Assisted , Quality of Life , Pancreas , Magnetic Resonance Spectroscopy , Radiosurgery/methods , Pancreatic Neoplasms
5.
Sci Rep ; 12(1): 20136, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418901

ABSTRACT

For prostate cancer (PCa) patients treated with definitive radiotherapy (RT), acute and late RT-related genitourinary (GU) toxicities adversely impact disease-specific quality of life. Early warning of potential RT toxicities can prompt interventions that may prevent or mitigate future adverse events. During intensity modulated RT (IMRT) of PCa, daily cone-beam computed tomography (CBCT) images are used to improve treatment accuracy through image guidance. This work investigated the performance of CBCT-based delta-radiomic features (DRF) models to predict acute and sub-acute International Prostate Symptom Scores (IPSS) and Common Terminology Criteria for Adverse Events (CTCAE) version 5 GU toxicity grades for 50 PCa patients treated with definitive RT. Delta-radiomics models were built using logistic regression, random forest for feature selection, and a 1000 iteration bootstrapping leave one analysis for cross validation. To our knowledge, no prior studies of PCa have used DRF models based on daily CBCT images. AUC of 0.83 for IPSS and greater than 0.7 for CTCAE grades were achieved as early as week 1 of treatment. DRF extracted from CBCT images showed promise for the development of models predictive of RT outcomes. Future studies will include using artificial intelligence and machine learning to expand CBCT sample sizes available for radiomics analysis.


Subject(s)
Prostatic Neoplasms , Urogenital Diseases , Male , Humans , Prostate/diagnostic imaging , Pilot Projects , Quality of Life , Artificial Intelligence , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Cone-Beam Computed Tomography
6.
Med Phys ; 49(4): 2794-2819, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34374098

ABSTRACT

Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods
7.
Sci Rep ; 11(1): 22737, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815464

ABSTRACT

This study provides a quantitative assessment of the accuracy of a commercially available deformable image registration (DIR) algorithm to automatically generate prostate contours and additionally investigates the robustness of radiomic features to differing contours. Twenty-eight prostate cancer patients enrolled on an institutional review board (IRB) approved protocol were selected. Planning CTs (pCTs) were deformably registered to daily cone-beam CTs (CBCTs) to generate prostate contours (auto contours). The prostate contours were also manually drawn by a physician. Quantitative assessment of deformed versus manually drawn prostate contours on daily CBCT images was performed using Dice similarity coefficient (DSC), mean distance-to-agreement (MDA), difference in center-of-mass position (ΔCM) and difference in volume (ΔVol). Radiomic features from 6 classes were extracted from each contour. Lin's concordance correlation coefficient (CCC) and mean absolute percent difference in radiomic feature-derived data (mean |%Δ|RF) between auto and manual contours were calculated. The mean (± SD) DSC, MDA, ΔCM and ΔVol between the auto and manual prostate contours were 0.90 ± 0.04, 1.81 ± 0.47 mm, 2.17 ± 1.26 mm and 5.1 ± 4.1% respectively. Of the 1,010 fractions under consideration, 94.8% of DIRs were within TG-132 recommended tolerance. 30 radiomic features had a CCC > 0.90 and 21 had a mean |%∆|RF < 5%. Auto-propagation of prostate contours resulted in nearly 95% of DIRs within tolerance recommendations of TG-132, leading to the majority of features being regarded as acceptably robust. The use of auto contours for radiomic feature analysis is promising but must be done with caution.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Prostatic Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy
8.
Med Phys ; 48(5): 2386-2399, 2021 May.
Article in English | MEDLINE | ID: mdl-33598943

ABSTRACT

PURPOSE: Radiomic features of cone-beam CT (CBCT) images have potential as biomarkers to predict treatment response and prognosis for patients of prostate cancer. Previous studies of radiomic feature analysis for prostate cancer were assessed in a variety of imaging modalities, including MRI, PET, and CT, but usually limited to a pretreatment setting. However, CBCT images may provide an opportunity to capture early morphological changes to the tumor during treatment that could lead to timely treatment adaptation. This work investigated the quality of CBCT-based radiomic features and their relationship with reconstruction methods applied to the CBCT projections and the preprocessing methods used in feature extraction. Moreover, CBCT features were correlated with planning CT (pCT) features to further assess the viability of CBCT radiomic features. METHODS: The quality of 42 CBCT-based radiomic features was assessed according to their repeatability and reproducibility. Repeatability was quantified by correlating radiomic features between 20 CBCT scans that also had repeated scans within 15 minutes. Reproducibility was quantified by correlating radiomic features between the planning CT (pCT) and the first fraction CBCT for 20 patients. Concordance correlation coefficients (CCC) of radiomic features were used to estimate the repeatability and reproducibility of radiomic features. The same patient dataset was assessed using different reconstruction methods applied to the CBCT projections. CBCT images were generated using 18 reconstruction methods using iterative (iCBCT) and standard (sCBCT) reconstructions, three convolution filters, and five noise suppression filters. Eighteen preprocessing settings were also considered. RESULTS: Overall, CBCT radiomic features were more repeatable than reproducible. Five radiomic features are repeatable in > 97% of the reconstruction and preprocessing methods, and come from the gray-level size zone matrix (GLSZM), neighborhood gray-tone difference matrix (NGTDM), and gray-level-run length matrix (GLRLM) radiomic feature classes. These radiomic features were reproducible in > 9.8% of the reconstruction and preprocessing methods. Noise suppression and convolution filter smoothing increased radiomic features repeatability, but decreased reproducibility. The top-repeatable iCBCT method (iCBCT-Sharp-VeryHigh) is more repeatable than the top-repeatable sCBCT method (sCBCT-Smooth) in 64% of the radiomic features. CONCLUSION: Methods for reconstruction and preprocessing that improve CBCT radiomic feature repeatability often decrease reproducibility. The best approach may be to use methods that strike a balance repeatability and reproducibility such as iCBCT-Sharp-VeryLow-1-Lloyd-256 that has 17 repeatable and eight reproducible radiomic features. Previous radiomic studies that only used pCT radiomic features have generated prognostic models of prostate cancer outcome. Since our study indicates that CBCT radiomic features correlated well with a subset of pCT radiomic features, one may expect CBCT radiomics to also generate prognostic models for prostate cancer.


Subject(s)
Prostatic Neoplasms , Spiral Cone-Beam Computed Tomography , Cone-Beam Computed Tomography , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/diagnostic imaging , Reproducibility of Results
9.
Phys Med ; 81: 77-85, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33445124

ABSTRACT

PURPOSE: To implement a daily CBCT based dose accumulation technique in order to assess ideal robust optimization (RO) parameters for IMPT treatment of prostate cancer. METHODS: Ten prostate cancer patients previously treated with VMAT and having daily CBCT were included. First, RO-IMPT plans were created with ± 3 mm and ± 5 mm patient setup and ± 3% proton range uncertainties, respectively. Second, the planning CT (pCT) was deformably registered to the CBCT to create a synthetic CT (sCT). Both daily and weekly sampling strategies were employed to determine optimal dose accumulation frequency. Doses were recalculated on sCTs for both ± 3 mm/±3% and ± 5 mm/±3% uncertainties and were accumulated back to the pCT. Accumulated doses generated from ± 3 mm/±3% and ± 5 mm/±3% RO-IMPT plans were evaluated using the clinical dose volume constraints for CTV, bladder, and rectum. RESULTS: Daily accumulated dose based on both ± 3mm/±3% and ±5 mm/±3% uncertainties for RO-IMPT plans resulted in satisfactory CTV coverage (RO-IMPT3mm/3% CTVV95 = 99.01 ± 0.87% vs. RO-IMPT5mm/3% CTVV95 = 99.81 ± 0.2%, P = 0.002). However, the accumulated dose based on ± 3 mm/3% RO-IMPT plans consistently provided greater OAR sparing than ±5 mm/±3% RO-IMPT plans (RO-IMPT3mm/3% rectumV65Gy = 2.93 ± 2.39% vs. RO-IMPT5mm/3% rectumV65Gy = 4.38 ± 3%, P < 0.01; RO-IMPT3mm/3% bladderV65Gy = 5.2 ± 7.12% vs. RO-IMPT5mm/3% bladderV65Gy = 7.12 ± 9.59%, P < 0.01). The gamma analysis showed high dosimetric agreement between weekly and daily accumulated dose distributions. CONCLUSIONS: This study demonstrated that for RO-IMPT optimization, ±3mm/±3% uncertainty is sufficient to create plans that meet desired CTV coverage while achieving superior sparing to OARs when compared with ± 5 mm/±3% uncertainty. Furthermore, weekly dose accumulation can accurately estimate the overall dose delivered to prostate cancer patients.


Subject(s)
Prostatic Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
10.
Phys Med ; 77: 54-63, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32781388

ABSTRACT

PURPOSE/OBJECTIVE: Online Adaptive Radiotherapy (ART) with daily MR-imaging has the potential to improve dosimetric accuracy by accounting for inter-fractional anatomical changes. This study provides an assessment for the feasibility and potential benefits of online adaptive MRI-Guided Stereotactic Body Radiotherapy (SBRT) for treatment of liver cancer. MATERIALS/METHODS: Ten patients with liver cancer treated with MR-Guided SBRT were included. Prescription doses ranged between 27 and 50 Gy in 3-5 fx. All SBRT fractions employed daily MR-guided setup while utilizing cine-MR gating. Organs-at-risk (OARs) included duodenum, bowel, stomach, kidneys and spinal cord. Daily MRIs and contours were utilized to create each adapted plan. Adapted plans used the beam-parameters and optimization-objectives from the initial plan. Planning target volume (PTV) coverage and OAR constraints were used to compare non-adaptive and adaptive plans. RESULTS: PTV coverage for non-adapted treatment plans was below the prescribed coverage for 32/47 fractions (68%), with 11 fractions failing by more than 10%. All 47 adapted fractions met prescribed coverage. OAR constraint violations were also compared for several organs. The duodenum exceeded tolerance for 5/23 non-adapted and 0/23 for adapted fractions. The bowel exceeded tolerance for 5/34 non-adaptive and 1/34 adaptive fractions. The stomach exceeded tolerance for 4/19 non-adapted and 1/19 for adaptive fractions. Accumulated dose volume histograms were also generated for each patient. CONCLUSION: Online adaptive MR-Guided SBRT of liver cancer using daily re-optimization resulted in better target conformality, coverage and OAR sparing compared with non-adaptive SBRT. Daily adaptive planning may allow for PTV dose escalation without compromising OAR sparing.


Subject(s)
Liver Neoplasms , Radiosurgery , Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Magnetic Resonance Imaging , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
11.
Pract Radiat Oncol ; 9(1): e46-e54, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30149192

ABSTRACT

PURPOSE: Magnetic resonance imaging guided (MRI-g) radiation therapy provides visualization of the target and organs at risk (OARs), allowing for daily online adaptive radiation therapy (OART). We hypothesized that MRI-g OART would improve OAR sparing and target coverage in patients with pancreatic cancer treated with stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: Ten patients received pancreas SBRT to a dose of 33 to 40 Gy in 5 fractions. The dose was prescribed to 90% coverage of the planning target volume at 100% isodose (PTV100). After each fraction's setup magnetic resonance imaging scan, the target position was aligned by 3-dimensional shifts, the normal anatomy was recontoured, and the original radiation therapy plan was recalculated to create a nonadaptive plan. A reoptimized (adaptive) plan was then generated for each fraction and renormalized to 90% coverage of PTV100. Target and OAR doses between nonadaptive and adaptive plans were compared to assess the dosimetric impact of daily adaptation. RESULTS: The PTV100 mean for adaptive and nonadaptive techniques was 90% and 80.4% (range, 46%-97%), respectively (P = .0008). Point maximum (Dmax) 38 Gy duodenum objectives were met in 43 adaptive fractions compared with 32 nonadaptive fractions (P = .022). Both PTV100 ≥90% and all OAR objectives were achieved in 28 adaptive fractions compared with only 3 nonadaptive fractions. For nonadaptive plans, interfraction increases in stomach volume correlated with higher stomach V33 (P = .004), stomach Dmax (P = .009), duodenum V33 (P = .021), and duodenum Dmax (P = .105). No correlation was observed between stomach volume and OAR doses for adaptive plans. OART plans with Dmax violations of the spinal cord (20 Gy) in 4 fractions and large bowel (38 Gy) in 5 fractions were identified (although not delivered). CONCLUSIONS: MRI-g OART improves target coverage and OAR sparing for pancreas SBRT. This benefit partially results from mitigation of interfraction variability in stomach volume. Caution must be exercised to evaluate all OARs near the treatment area.


Subject(s)
Magnetic Resonance Imaging/methods , Organs at Risk/radiation effects , Pancreatic Neoplasms/surgery , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Surgery, Computer-Assisted/methods , Follow-Up Studies , Humans , Pancreatic Neoplasms/pathology , Prognosis , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Tumor Burden
12.
Strahlenther Onkol ; 195(2): 121-130, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30140944

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to evaluate an automatic multi-atlas-based segmentation method for generating prostate, peripheral (PZ), and transition zone (TZ) contours on MRIs with and without fat saturation (±FS), and compare MRIs from different vendor MRI systems. METHODS: T2-weighted (T2) and fat-saturated (T2FS) MRIs were acquired on 3T GE (GE, Waukesha, WI, USA) and Siemens (Erlangen, Germany) systems. Manual prostate and PZ contours were used to create atlas libraries. As a test MRI is entered, the procedure for atlas segmentation automatically identifies the atlas subjects that best match the test subject, followed by a normalized intensity-based free-form deformable registration. The contours are transformed to the test subject, and Dice similarity coefficients (DSC) and Hausdorff distances between atlas-generated and manual contours were used to assess performance. RESULTS: Three atlases were generated based on GE_T2 (n = 30), GE_T2FS (n = 30), and Siem_T2FS (n = 31). When test images matched the contrast and vendor of the atlas, DSCs of 0.81 and 0.83 for T2 ± FS were obtained (baseline performance). Atlases performed with higher accuracy when segmenting (i) T2FS vs. T2 images, likely due to a superior contrast between prostate vs. surrounding tissue; (ii) prostate vs. zonal anatomy; (iii) in the mid-gland vs. base and apex. Atlases performance declined when tested with images with differing contrast and MRI vendor. Conversely, combined atlases showed similar performance to baseline. CONCLUSION: The MRI atlas-based segmentation method achieved good results for prostate, PZ, and TZ compared to expert contoured volumes. Combined atlases performed similarly to matching atlas and scan type. The technique is fast, fully automatic, and implemented on commercially available clinical platform.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Commerce , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Prostate/anatomy & histology , Prostate/diagnostic imaging , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/instrumentation , Male , Sensitivity and Specificity
13.
J Neurotrauma ; 36(9): 1399-1415, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30284945

ABSTRACT

Neuroimaging facilitates the translation of animal pre-clinical research to human application. The large porcine spinal cord is useful for testing invasive interventions. Ideally, the safety and efficacy of a delayed intervention is tested in pigs that have recovered sufficiently after spinal cord injury (SCI) to allow either deterioration or improvement of function to be detected. We set out to create moderate severity T9 injuries in Yucatan minipigs by conducting a bridging study adapting methods previously developed in infant piglets. The injury severity was varied according to two pneumatic impactor parameters: the piston compression depth into tissue or the velocity. To stratify locomotor recovery, a 10-point scale used in prior piglet studies was redefined through longitudinal observations of spontaneous recovery. Using hindlimb body weight support to discriminate injury severity, we found that end-point recovery was strongly bimodal to either non-weight-bearing plegia with reciprocating leg movements (<5/10) or recovery of weight bearing that improved toward a ceiling effect (≥ 8/10). No intermediate recovery animals were observed at 2 months post-injury. The ability of intra-operative ultrasound and acute magnetic resonance imaging (MRI) to provide immediate predictive feedback regarding tissue and vascular changes following SCI was assessed. There was an inverse association between locomotor outcome and early gray matter hemorrhage on MRI and ultrasound. Epicenter blood flow following contusion predicted recovery or non-recovery of weight-bearing. The depth of the dorsal cerebrospinal fluid space, which varied between animals, influenced injury severity and confounded the results in this fixed-stroke paradigm.


Subject(s)
Locomotion/physiology , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , Animals , Cerebrovascular Circulation/physiology , Female , Magnetic Resonance Imaging , Spinal Cord/blood supply , Spinal Cord/physiopathology , Swine , Swine, Miniature , Ultrasonography, Doppler
14.
Transl Androl Urol ; 7(3): 445-458, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30050803

ABSTRACT

In radiotherapy (RT) of prostate cancer, dose escalation has been shown to reduce biochemical failure. Dose escalation only to determinate prostate tumor habitats has the potential to improve tumor control with less toxicity than when the entire prostate is dose escalated. Other issues in the treatment of the RT patient include the choice of the RT technique (hypo- or standard fractionation) and the use and length of concurrent/adjuvant androgen deprivation therapy (ADT). Up to 50% of high-risk men demonstrate biochemical failure suggesting that additional strategies for defining and treating patients based on improved risk stratification are required. The use of multiparametric MRI (mpMRI) is rapidly gaining momentum in the management of prostate cancer because of its improved diagnostic potential and its ability to combine functional and anatomical information. Currently, the Prostate Imaging, Reporting and Diagnosis System (PIRADS) is the standard of care for region of interest (ROI) identification and risk classification. However, PIRADS was not designed for 3D tumor volume delineation; there is a large degree of subjectivity and PIRADS does not accurately and reproducibly elucidate inter- and intra-lesional spatial heterogeneity. "Radiomics", as it refers to the extraction and analysis of large number of advanced quantitative radiological features from medical images using high throughput methods, is perfectly suited as an engine to effectively sift through the multiple series of prostate mpMRI sequences and quantify regions of interest. The radiomic efforts can be summarized in two main areas: (I) detection/segmentation of the suspicious lesion; and (II) assessment of the aggressiveness of prostate cancer. As related to RT, the goal of the latter is in particular to identify patients at high risk for metastatic disease; and the aim of the former is to identify and segment cancerous lesions and thus provide targets for radiation boost. The article is structured as follows: first, we describe the radiomic approach; and second, we discuss the radiomic pipeline as tailored for RT of prostate cancer. In this process we summarize the current efforts and progress in integrating mpMRI radiomics into the radiotherapeutic management of prostate cancer with emphasis placed on its role in treatment target definition, treatment plan strategizing, and prognostic assessment. The described concepts, methods and tools are not currently applicable to the radiation oncology practice outside of the research setting. More data are required in the form of clinical trials to assess the robustness of radiomics-based predictive models, and to maximize the efficacy of these models.

15.
Cureus ; 10(5): e2577, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29984119

ABSTRACT

Radiation treatment verification has improved significantly over the past decades. The field has moved from film X-rays and skin marks to fiducial tracking and daily cone beam computed tomography (CBCT) for tumor localization. We now have the ability to perform daily on-board magnetic resonance imaging (MRI), which provides superior soft tissue contrast compared to computed tomography (CT). In the management of cervical cancer, the brachytherapy literature has demonstrated that MRI allows for better delineation of the high-risk clinical target volume (HR-CTV) and the use of MRI-guided brachytherapy has translated into improved treatment outcomes. Consensus contouring guidelines for intensity modulated radiation therapy (IMRT) for cervical cancer advise including the whole uterus in the target volume and adding large planning target volume (PTV) margins to account for inter-fractional uterine motion and target motion resulting from variable rectal and bladder filling. MRI-guided radiation therapy (MRgRT) systems enable the possibility to precisely delineate the target volume on a daily basis and to perform truly adaptive delivery. This advancement in technology provides the opportunity to explore how external beam treatment volumes could be safely reduced for better sparing of pelvic organs for the benefit of our patients with cervical cancer. We describe the MR-guided definitive external beam radiation therapy and brachytherapy for a 32-year-old woman with intact cervical cancer. We contoured the uterus, bladder, rectum, and gross tumor volume (GTV) on each of her 25 set-up MRIs. We demonstrate a steady reduction in the GTV and increased displacement of the uterus and GTV as the GTV decreased in size. The findings presented suggest that cervical cancer could greatly benefit from an adaptive MRgRT approach.

16.
Cureus ; 10(4): e2423, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29872603

ABSTRACT

Online adaptive radiotherapy (ART) with frequent imaging has the potential to improve dosimetric accuracy by accounting for anatomical and functional changes during the course of radiotherapy. Presented are three interesting cases that provide an assessment of online adaptive magnetic resonance-guided radiotherapy (MRgRT) for lung stereotactic body radiotherapy (SBRT). The study includes three lung SBRT cases, treated on an MRgRT system where MR images were acquired for planning and prior to each treatment fraction. Prescription dose ranged from 48 to 50 Gy in four to five fractions, normalized to where 95% of the planning target volume (PTV) was covered by 100% of the prescription dose. The process begins with the gross tumor volume (GTV), PTV, spinal cord, lungs, heart, and esophagus being delineated on the planning MRI. The treatment plan was then generated using a step-and-shoot intensity modulated radiotherapy (IMRT) technique, which utilized a Monte Carlo dose calculation. Next, the target and organs at risk (OAR) contours from the planning MRI were deformably propagated to the daily setup MRIs. These deformed contours were reviewed and modified by the physician. To determine the efficacy of ART, two different strategies were explored: 1) Calculating the plan created for the planning MR on each fraction setup MR dataset (Non-Adapt) and 2) creating a new optimized IMRT plan on the fraction setup MR dataset (FxAdapt). The treatment plans from both strategies were compared using the clinical dose-volume constraints. PTV coverage constraints were not met for 33% Non-Adapt fractions; all FxAdapt fractions met this constraint. Eighty-eight percent of all OAR constraints studied were better on FxAdapt plans, while 12% of OAR constraints were superior on Non-Adapt fractions. The OAR that garnered the largest benefit would be the uninvolved lung, with superior sparing in 92% of the FxAdapt studied. Similar, but less pronounced, benefits from adaptive planning were experienced for the spinal cord, chest wall, and esophagus. Online adaptive MR-guided lung SBRT can provide better target conformality and homogeneity and OAR sparing compared with non-adaptive SBRT in selected cases. Conversely, if the PTV isn't adjacent to multiple OARs, then the benefit from ART may be limited. Further studies, which incorporate a larger cohort of patients with uniform prescriptions, are needed to thoroughly evaluate the benefits of daily online ART during MRgRT.

17.
Cureus ; 10(3): e2385, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29850380

ABSTRACT

Magnetic resonance-guided radiotherapy (MRgRT) is a new and evolving treatment modality that allows unprecedented visualization of the tumor and surrounding anatomy. MRgRT includes daily 3D magnetic resonance imaging (MRI) for setup and rapidly repeated near real-time MRI scans during treatment for target tracking. One of the more exciting potential benefits of MRgRT is the ability to analyze serial MRIs to monitor treatment response or predict outcomes. A typical radiation treatment (RT) over the span of 10-15 minutes on the MRIdian system (ViewRay, Cleveland, OH) yields thousands of "cine" images, each acquired in 250 ms. This unique data allows for a glimpse in image intensity changes during RT delivery. In this report, we analyze cine images from a single fraction RT of a glioblastoma patient on the ViewRay platform in order to characterize the dynamic signal changes occurring during RT therapy. The individual frames in the cines were saved into DICOM format and read into an MIM image analysis platform (MIM Software, Cleveland, OH) as a time series. The three possible states of the three Cobalt-60 radiation sources-OFF, READY, and ON-were also recorded. An in-house Java plugin for MIM was created in order to perform principal component analysis (PCA) on each of the datasets. The analysis resulted in first PC, related to monotonous signal increase over the course of the treatment fraction. We found several distortion patterns in the data that we postulate result from the perturbation of the magnetic field due to the moving metal parts in the platform while treatment was being administered. The largest variations were detected when all Cobalt-60 sources were OFF. During this phase of the treatment, the gantry and multi-leaf collimators (MLCs) are moving. Conversely, when all Cobalt-60 sources were in the ON position, the image signal fluctuations were minimal, relating to very little mechanical motion. At this phase, the gantry, the MLCs, and sources are fixed in their positions. These findings were confirmed in a study with the daily quality assurance (QA) phantom. While the identified variations were not related to physiological processes, our findings confirm the sensitivity of the developed approach to identify very small fluctuations. Relating these variations to the physical changes that occur during treatment shows the methodical ability of the technique to uncover their underlying sources.

18.
Int J Radiat Oncol Biol Phys ; 102(4): 821-829, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29908220

ABSTRACT

PURPOSE: To develop a prostate tumor habitat risk scoring (HRS) system based on multiparametric magnetic resonance imaging (mpMRI) referenced to prostatectomy Gleason score (GS) for automatic delineation of gross tumor volumes. A workflow for integration of HRS into radiation therapy boost volume dose escalation was developed in the framework of a phase 2 randomized clinical trial (BLaStM). METHODS AND MATERIALS: An automated quantitative mpMRI-based 10-point pixel-by-pixel method was optimized to prostatectomy GSs and volumes using referenced dynamic contrast-enhanced and apparent diffusion coefficient sequences. The HRS contours were migrated to the planning computed tomography scan for boost volume generation. RESULTS: There were 51 regions of interest in 12 patients who underwent radical prostatectomy (26 with GS ≥7 and 25 with GS 6). The resultant heat maps showed inter- and intratumoral heterogeneity. The HRS6 level was significantly associated with radical prostatectomy regions of interest (slope 1.09, r = 0.767; P < .0001). For predicting the likelihood of cancer, GS ≥7 and GS ≥8 HRS6 area under the curve was 0.718, 0.802, and 0.897, respectively. HRS was superior to the Prostate Imaging, Reporting and Diagnosis System 4/5 classification, wherein the area under the curve was 0.62, 0.64, and 0.617, respectively (difference with HR6, P < .0001). HRS maps were created for the first 37 assessable patients on the BLaStM trial. There were an average of 1.38 habitat boost volumes per patient at a total boost volume average of 3.6 cm3. CONCLUSIONS: An automated quantitative mpMRI-based method was developed to objectively guide dose escalation to high-risk habitat volumes based on prostatectomy GS.


Subject(s)
Magnetic Resonance Imaging/methods , Prostatic Neoplasms/radiotherapy , Contrast Media , Humans , Image Enhancement , Logistic Models , Male , Neoplasm Grading , Prostatectomy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery
19.
Cureus ; 10(3): e2346, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29796358

ABSTRACT

Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue.

SELECTION OF CITATIONS
SEARCH DETAIL
...