Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Neurobiol ; 23(3): 331-47, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12825831

ABSTRACT

1. Caffeine at 0.3-10 mM enhanced the binding of [3H]ryanodine to calcium-release channels of rabbit muscle sarcoplasmic reticulum. A variety of other xanthines were as efficacious as caffeine or nearly so, but none appeared markedly more potent. 2. Caffeine at 1 mM markedly inhibited binding of [3H]diazepam to GABAA receptors in rat cerebral cortical membranes. 3. Other xanthines also inhibited binding with certain dimethylpropargylxanthines being nearly fivefold more potent than caffeine. 4. Caffeine at 1 mM stimulated binding of [35S]TBPS to GABAA receptors as did certain other xanthines. 5. The dimethylpropargylxanthines had little effect. 1,3-Dipropyl-8-cyclopentylxanthine at 100 microM had no effect on [3H]diazepam binding, but markedly inhibited [35S]TBPS binding. 6. Structure-activity relationships for xanthines do differ for calcium-release channels and and for different sites on GABAA receptors, but no highly selective lead compounds were identified.


Subject(s)
Caffeine/pharmacology , Cell Membrane/drug effects , Cerebral Cortex/drug effects , Muscle, Skeletal/drug effects , Neurons/drug effects , Receptors, GABA-A/drug effects , Ryanodine Receptor Calcium Release Channel/drug effects , Animals , Binding, Competitive/drug effects , Binding, Competitive/physiology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Caffeine/analogs & derivatives , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cell Membrane/metabolism , Cerebral Cortex/metabolism , Diazepam/pharmacology , Dose-Response Relationship, Drug , Male , Mice , Muscle, Skeletal/metabolism , Neurons/metabolism , Rabbits , Radioisotopes , Radioligand Assay , Receptors, GABA-A/metabolism , Ryanodine/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Xanthines/pharmacology
2.
J Med Chem ; 45(16): 3440-50, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12139454

ABSTRACT

A series of tricyclic imidazo[2,1-i]purinones and ring-enlarged analogues derived from xanthine derivatives have been prepared as adenosine receptor (AR) antagonists. In comparison with xanthines, the tricyclic compounds exhibit increased water solubility due to a basic nitrogen atom, which can be protonated under physiological conditions. Substituents were introduced that confer high affinity for A(2A) or A(3) ARs, respectively. A new capillary electrophoresis method was developed for the determination of the enantiomeric purity of selected chiral products using native and modified beta-cyclodextrins as chiral discriminators. The compounds were investigated in radioligand binding assays at rat brain A(1) and A(2A) ARs. Selected compounds were additionally investigated in radioligand binding assays at human recombinant A(3) ARs and in functional studies (adenylate cyclase assays) at A(1) ARs of rat fat cell membranes, A(2A) ARs of rat PC 12 cell membranes, and mouse A(2B) ARs of NIH 3T3 cell membranes. Structure-activity relationships were similar to those of corresponding xanthine derivatives. The 2-styrylimidazopurinones were less potent at A(2A) ARs as compared to 8-styrylxanthine derivatives. The most potent compound at A(2A) ARs was (S)-1,4-dimethyl-8-ethyl-2-styryl-imidazo[2,1-i]purinone (S-25) exhibiting a K(i) value of 424 nM at rat A(2A) ARs. The compound was highly selective for A(2A) receptors vs A(1) and A(3) ARs. Selectivity vs A(2B) ARs, however, was low. Among the 1-unsubstituted 2-phenyl-imidazo[2,1-i]purin-5-one derivatives, very potent and highly selective antagonists for human A(3) ARs were identified. The most potent A(3) antagonist of the present series was (R)-4-methyl-8-ethyl-2-phenyl-imidazo[2,1-i]purin-5-one (R-24) exhibiting a K(i) value of 2.3 nM and high selectivity for A(3) receptors vs all other AR subtypes.


Subject(s)
Heterocyclic Compounds, 3-Ring/chemical synthesis , Imidazoles/chemical synthesis , Purinergic P1 Receptor Antagonists , Purines/chemical synthesis , Purinones/chemical synthesis , 3T3 Cells , Adenylyl Cyclase Inhibitors , Adenylyl Cyclases/biosynthesis , Animals , Brain/drug effects , Brain/metabolism , Electrophoresis, Capillary , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , In Vitro Techniques , Membranes , Mice , PC12 Cells , Purines/chemistry , Purines/pharmacology , Purinones/chemistry , Purinones/pharmacology , Radioligand Assay , Rats , Receptor, Adenosine A2A , Receptor, Adenosine A2B , Receptor, Adenosine A3 , Solubility , Stereoisomerism , Structure-Activity Relationship , Water
3.
Drug Dev Res ; 44(2-3): 97-105, 1998 Jun 01.
Article in English | MEDLINE | ID: mdl-23487508

ABSTRACT

Strategy, Management and Health PolicyVenture Capital Enabling TechnologyPreclinical ResearchPreclinical Development Toxicology, Formulation Drug Delivery, PharmacokineticsClinical Development Phases I-III Regulatory, Quality, ManufacturingPostmarketing Phase IV Xanthine and adenosine derivatives, known to bind to recombinant rat A3 adenosine receptors stably expressed in Chinese hamster ovary cells, were characterized in a functional assay consisting of activation of A3 receptor-stimulated binding of [35S]GTPγS in rat RBL-2H3 cell membranes. 1,3-Dibutylxanthine-7-riboside-5'-N-methylcarboxamide (DBXRM, 7b), previously shown to inhibit adenylyl cyclase via rat A3 receptors with full efficacy, appeared to be a partial agonist at the rat A3 receptor of RBL-2H3 cells. Full agonists, such as Cl-IB-MECA or I-AB-MECA, were more potent and effective than the partial agonist DBXRM in causing desensitization of rat A3 receptors, as indicated by loss of [35S]GTPγS binding. At A1 receptors, antagonism of agonist-elicited inhibition of rat adipocyte adenylyl cyclase was observed for several xanthine-7-riboside derivatives that had been shown to be full agonists at rat A3 receptors. A new xanthine riboside (3'-deoxyDBXRM, 7c) was synthesized and found to be a partial agonist at rat A3 receptors and an antagonist at rat A1 receptors. Thus, it is possible for the same compound to stimulate one adenosine receptor subtype (A3) and block another subtype (A1) within the same species.

4.
Drug Dev Res ; 42(2): 98-108, 1997 Oct 01.
Article in English | MEDLINE | ID: mdl-22772360

ABSTRACT

Riboflavin inhibited binding of both agonist and antagonist radioligands to rat brain A(1)-adenosine receptors with K(i) values of approximately 10 µM. In an adenylate cyclase assay with membrane preparations from either rat adipocytes or DDT MF-2 cells, both of which contain A(1)-adenosine receptors, riboflavin inhibited isoproterenol-stimulated cyclase activity with an IC(50) of approximately 20 µM. However, the inhibition of cyclase by riboflavin was not reversed by an A(1)-selective antagonist, nor by pretreatment with pertussis toxin. Thus, neither A(1)-receptors nor G(i)-proteins appear critically involved in the inhibition of cyclase by riboflavin. Riboflavin did block the stimulation by an adenosine analog of [(35)S]GTPγS binding in rat cerebral cortical membranes. However, riboflavin also inhibited the stimulation by fMLP of [(35)S]GTPγS binding in HL-60 cell membranes. Riboflavin inhibited forskolin-stimulated cyclase in membranes from DDT MF-2 cells > rat adipocytes > PC12 cells, hamster CHO M2 cells, and wild-type S49 cells. There was virtually no inhibition of forskolin-stimulated cyclase in membranes of human platelets, rat cerebral cortex, or cyc(-)S49 cells lacking G(s)-proteins. The calcium-stimulated cyclase in rat cerebral cortical membranes was inhibited by riboflavin. A preincubation of membranes with riboflavin markedly enhanced the inhibition for DDT MF-2 and wild-type and cyc(-)S49 membranes. The extent of inhibition in the different cell lines was dependent on the agent used to stimulate cyclase. Riboflavin, like the P-site inhibitor 2´,5´-dideoxyadenosine, was more potent and efficacious when manganese instead of forskolin was used as the stimulant. However, unlike the P-site inhibitor, riboflavin did not markedly inhibit GppNHp- or fluoride-stimulated cyclase. Riboflavin at low micromolar concentrations appears to have three possibly interrelated effects on second messenger systems subserved by G-proteins. These are antagonism at A(1)-adenosine receptors, inhibition of turnover of guanyl nucleotides at G-proteins, and inhibition of adenylate cyclase.

5.
Nucleosides Nucleotides ; 15(1-3): 693-717, 1996.
Article in English | MEDLINE | ID: mdl-27043138

ABSTRACT

The binding affinities at rat A1, A2a, and A3 adenosine receptors of a wide range of heterocyclic derivatives have been determined. Mono-, bi-, tricyclic and macrocyclic compounds were screened in binding assays, using either [3H]PIA or [3H]CGS 21680 in rat brain membranes or [125I]AB-MECA in CHO cells stably transfected with rat A3 receptors. Several new classes of adenosine antagonists (e.g. 5-oxoimidazopyrimidines and a pyrazoloquinazoline) were identified. Various sulfonylpiperazines, 11-hydroxytetrahydrocarbazolenine, 4H-pyrido[1,2-a]pyrimidinone, folic acid, and cytochalasin H and J bound to A3 receptors selectively. Moreover, cytochalasin A, which bound to A1 adenosine receptors with Ki value of 1.9 µM, inhibited adenylyl cyclase in rat adipocytes, but not via reversible A1 receptor binding.

SELECTION OF CITATIONS
SEARCH DETAIL
...