Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(64): e202302420, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37615406

ABSTRACT

Crystalline porous organic salts (CPOS) are a subclass of molecular crystals. The low solubility of CPOS and their building blocks limits the choice of crystallisation solvents to water or polar alcohols, hindering the isolation, scale-up, and scope of the porous material. In this work, high throughput screening was used to expand the solvent scope, resulting in the identification of a new porous salt, CPOS-7, formed from tetrakis(4-sulfophenyl)methane (TSPM) and tetrakis(4-aminophenyl)methane (TAPM). CPOS-7 does not form with standard solvents for CPOS, rather a hydrated phase (Hydrate2920) previously reported is isolated. Initial attempts to translate the crystallisation to batch led to challenges with loss of crystallinity and Hydrate2920 forming favorably in the presence of excess water. Using acetic acid as a dehydrating agent hindered formation of Hydrate2920 and furthermore allowed for direct conversion to CPOS-7. To allow for direct formation of CPOS-7 in high crystallinity flow chemistry was used for the first time to circumvent the issues found in batch. CPOS-7 and Hydrate2920 were shown to have promise for water and CO2 capture, with CPOS-7 having a CO2 uptake of 4.3 mmol/g at 195 K, making it one of the most porous CPOS reported to date.

2.
Org Biomol Chem ; 19(36): 7737-7753, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34549240

ABSTRACT

Continuous flow technology has played an undeniable role in enabling modern chemical synthesis, whereby a myriad of reactions can now be performed with greater efficiency, safety and control. As flow chemistry furthermore delivers more sustainable and readily scalable routes to important target structures a growing number of industrial applications are being reported. In this review we highlight the impact of flow chemistry on revitalising important chemical reactions that were either forgotten soon after their initial report as necessary improvements were not realised due to a lack of available technology, or forbidden due to unacceptable safety concerns relating to the experimental procedure. In both cases flow processing in combination with further reaction optimisation has rendered a powerful set of tools that make such transformations not only highly efficient but moreover very desirable due to a more streamlined construction of desired scaffolds. This short review highlights important contributions from academic and industrial laboratories predominantly from the last 5 years allowing the reader to gain an appreciation of the impact of flow chemistry.


Subject(s)
Technology
3.
Chemistry ; 22(12): 3981-4, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26748429

ABSTRACT

Pentasubstituted aromatic rings serve as templates for drug design and can be conveniently prepared by the thermolysis of suitably substituted alkynes under microwave conditions.


Subject(s)
Alkynes/chemistry , Hydrocarbons, Aromatic/chemical synthesis , Catalysis , Cyclization , Drug Design , Hydrocarbons, Aromatic/chemistry , Microwaves , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...