Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 10(2): uhac281, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36818366

ABSTRACT

We present a chromosome-level assembly of the Cascade hop (Humulus lupulus L. var. lupulus) genome. The hop genome is large (2.8 Gb) and complex, and early attempts at assembly were fragmented. Recent advances have made assembly of the hop genome more tractable, transforming the extent of investigation that can occur. The chromosome-level assembly of Cascade was developed by scaffolding the previously reported Cascade assembly generated with PacBio long-read sequencing and polishing with Illumina short-read DNA sequencing. We developed gene models and repeat annotations and used a controlled bi-parental mapping population to identify significant sex-associated markers. We assessed molecular evolution in gene sequences, gene family expansion and contraction, and time of divergence from Cannabis sativa and other closely related plant species using Bayesian inference. We identified the putative sex chromosome in the female genome based on significant sex-associated markers from the bi-parental mapping population. While the estimate of repeat content (~64%) is similar to the estimate for the hemp genome, syntenic blocks in hop contain a greater percentage of LTRs. Hop is enriched for disease resistance-associated genes in syntenic gene blocks and expanded gene families. The Cascade chromosome-level assembly will inform cultivation strategies and serve to deepen our understanding of the hop genomic landscape, benefiting hop researchers and the Cannabaceae genomics community.

2.
Sci Rep ; 11(1): 5138, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664420

ABSTRACT

Hops are valued for their secondary metabolites, including bitter acids, flavonoids, oils, and polyphenols, that impart flavor in beer. Previous studies have shown that hop yield and bitter acid content decline with increased temperatures and low-water stress. We looked at physiological traits and differential gene expression in leaf, stem, and root tissue from hop (Humulus lupulus) cv. USDA Cascade in plants exposed to high temperature stress, low-water stress, and a compound treatment of both high temperature and low-water stress for six weeks. The stress conditions imposed in these experiments caused substantial changes to the transcriptome, with significant reductions in the expression of numerous genes involved in secondary metabolite biosynthesis. Of the genes involved in bitter acid production, the critical gene valerophenone synthase (VPS) experienced significant reductions in expression levels across stress treatments, suggesting stress-induced lability in this gene and/or its regulatory elements may be at least partially responsible for previously reported declines in bitter acid content. We also identified a number of transcripts with homology to genes shown to affect abiotic stress tolerance in other plants that may be useful as markers for breeding improved abiotic stress tolerance in hop. Lastly, we provide the first transcriptome from hop root tissue.


Subject(s)
Humulus/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Secondary Metabolism/genetics , Droughts , Gene Expression Regulation, Plant/genetics , Hot Temperature/adverse effects , Humulus/growth & development , Plant Leaves/growth & development , Plant Proteins/biosynthesis , Water/chemistry
3.
Plant Genome ; 14(1): e20072, 2021 03.
Article in English | MEDLINE | ID: mdl-33605092

ABSTRACT

Hop (Humulus lupulus L. var Lupulus) is a diploid, dioecious plant with a history of cultivation spanning more than one thousand years. Hop cones are valued for their use in brewing and contain compounds of therapeutic interest including xanthohumol. Efforts to determine how biochemical pathways responsible for desirable traits are regulated have been challenged by the large (2.8 Gb), repetitive, and heterozygous genome of hop. We present a draft haplotype-phased assembly of the Cascade cultivar genome. Our draft assembly and annotation of the Cascade genome is the most extensive representation of the hop genome to date. PacBio long-read sequences from hop were assembled with FALCON and partially phased with FALCON-Unzip. Comparative analysis of haplotype sequences provides insight into selective pressures that have driven evolution in hop. We discovered genes with greater sequence divergence enriched for stress-response, growth, and flowering functions in the draft phased assembly. With improved resolution of long terminal retrotransposons (LTRs) due to long-read sequencing, we found that hop is over 70% repetitive. We identified a homolog of cannabidiolic acid synthase (CBDAS) that is expressed in multiple tissues. The approaches we developed to analyze the draft phased assembly serve to deepen our understanding of the genomic landscape of hop and may have broader applicability to the study of other large, complex genomes.


Subject(s)
Humulus , Diploidy , Genome, Plant , Genomics , Haplotypes , Humulus/genetics
4.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-30649295

ABSTRACT

Biocuration plays a crucial role in building databases and complex systems-level platforms required for processing, annotating and analyzing 'Big Data' in biology. However, biocuration efforts cannot keep pace with a dramatic increase in the production of omics data; this presents one of the bottlenecks in genomics. In two pathway curation jamborees, Plant Reactome curators tested strategies for introducing researchers to pathway curation tools, harnessing biologists' expertise in curating plant pathways and developing a network of community biocurators. We summarize the strategy, workflow and outcomes of these exercises, and discuss the role of community biocuration in advancing databases and genomic resources.


Subject(s)
Data Curation/methods , Databases, Genetic , Gene Regulatory Networks/genetics , Genomics/methods , Big Data , Data Mining , Genes, Plant/genetics , Workflow
5.
Inorg Chem ; 57(15): 8923-8932, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29979041

ABSTRACT

Intracellular delivery of therapeutic or analytic copper from copper bis-thiosemicabazonato complexes is generally described in terms of mechanisms involving one-electron reduction to the Cu(I) analogue by endogenous reductants, thereby rendering the metal ion labile and less strongly coordinating to the bis-thiosemicarbazone (btsc) ligand. However, electrochemical and spectroscopic studies described herein indicate that one-electron oxidation of CuII(btsc) and ZnIIATSM (btsc = diacetyl-bis(4-methylthiosemicarbazonato)) complexes occurs within the range of physiological oxidants, leading to the likelihood that unrecognized oxidative pathways for copper release also exist. Oxidations of CuII(btsc) by H2O2 catalyzed by either myeloperoxidase or horseradish peroxidase, by HOCl and taurine chloramine (which are chlorinating agents generated primarily in activated neutrophils from MPO-catalyzed reactions), and by peroxynitrite species (ONOOH, ONOOCO2-) that can form under certain conditions of oxidative stress are demonstrated. Unlike reduction, the oxidative reactions proceed by irreversible ligand oxidation, culminating in release of Cu(II). 2-Pyridylazoresorcinol complexation was used to demonstrate that Cu(II) release by reaction with peroxynitrite species involved rate-limiting homolysis of the peroxy O-O bond to generate secondary oxidizing radicals (NO2•, •OH, and CO3•-). Because the potentials for CuII(btsc) oxidation and reduction are ligand-dependent, varying by as much as 200 mV, it is clearly advantageous in designing therapeutic methodologies for specific treatments to identify the operative Cu-release pathway.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Thiosemicarbazones/chemistry , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Hypochlorous Acid/chemistry , Ligands , Oxidation-Reduction , Peroxidase/chemistry , Peroxynitrous Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...