Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15704, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977706

ABSTRACT

Halophiles are one of the classes of extremophilic microorganisms that can flourish in environments with very high salt concentrations. In this study, fifteen bacterial strains isolated from various crop rhizospheric soils of agricultural fields along the Southwest coastline of Saurashtra, Gujarat, and identified by 16S rRNA gene sequencing as Halomonas pacifica, H. stenophila, H. salifodinae, H. binhaiensis, Oceanobacillus oncorhynchi, and Bacillus paralicheniformis were investigated for their potentiality to produce extremozymes and compatible solute. The isolates showed the production of halophilic protease, cellulase, and chitinase enzymes ranging from 6.90 to 35.38, 0.004-0.042, and 0.097-0.550 U ml-1, respectively. The production of ectoine-compatible solute ranged from 0.01 to 3.17 mg l-1. Furthermore, the investigation of the ectoine-compatible solute production at the molecular level by PCR showed the presence of the ectoine synthase gene responsible for its biosynthesis in the isolates. Besides, it also showed the presence of glycine betaine biosynthetic gene betaine aldehyde dehydrogenase in the isolates. The compatible solute production by these isolates may be linked to their ability to produce extremozymes under saline conditions, which could protect them from salt-induced denaturation, potentially enhancing their stability and activity. This correlation warrants further investigation.


Subject(s)
RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Amino Acids, Diamino/biosynthesis , Amino Acids, Diamino/metabolism , India , Crops, Agricultural/microbiology , Cellulase/metabolism , Cellulase/genetics , Cellulase/biosynthesis , Chitinases/metabolism , Chitinases/genetics , Salt Tolerance/genetics , Phylogeny , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/classification , Bacillus/genetics , Bacillus/metabolism , Bacillus/isolation & purification
2.
Heliyon ; 10(10): e30925, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778996

ABSTRACT

In the realm of food nutritional security, the development of mineral-rich grains assumes a pivotal role in combating malnutrition. Within the scope of the current investigation, we endeavoured to discern the transcripts accountable for the improved accumulation of grain-Fe within Indian barnyard millet. This pursuit entailed transcriptome sequencing of genotypes BAR-1433 (with high Fe content) and BAR-1423 (with low Fe content) during two distinct stages of spike development-spike emergence and milking stage. In the context of spike emergence, we identified a cohort of 895 up-regulated transcripts and 126 down-regulated transcripts that delineated the difference between the high and low grain-Fe genotypes. In contrast, during the milking stage, the tally of up-regulated transcripts reached 436, while down-regulated transcripts numbered 285. The transcripts that consistently ascended in both developmental stages underwent functional annotation, aligning their roles with nucleolar proteins, metal-nicotianamine transporters, ribonucleoprotein complexes, vinorine synthases, cellulose synthases, auxin response factors, embryogenesis abundant proteins, cytochrome c oxidases, and zinc finger BED domain-containing proteins. Meanwhile, a heterogeneous spectrum of transcripts exhibited differential expression and upregulation throughout the distinct stages. These transcripts encompassed various facets, such as ABC Transporter family proteins, Calcium-dependent kinase family, Ferritin, Metal ion binding, Iron-sulfur cluster binding, Cytochrome family, Zinc finger transcription factor family, Ferredoxin-NADP reductase type 1 family, Putative laccase, Multicopper oxidase family, and Terpene synthase family. To authenticate the reliability of these transcripts, six contigs representing probable functions, including metal transporters, iron sulfur coordination, metal ion binding, auxin-responsive GH3-like protein 2, and cytochrome P450 71B16, were harnessed for primer design. Subsequently, these primers were utilized in the validation process through qRT-PCR, with the outcomes aligning harmoniously with the transcriptome results. This study chronicles a constellation of genes linked to elevated iron content within barnyard millet, showcasing a proof of concept for leveraging transcriptome insights in marker-assisted selection to fortify barnyard millet with iron. This marks the inaugural comprehensive transcriptome analysis delineating transcripts associated with varying levels of grain-iron content during the panicle developmental stages within the barnyard millet paradigm.

3.
Mol Biol Rep ; 50(8): 6691-6701, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37378750

ABSTRACT

BACKGROUND: Peanut (Arachis hypogaea L.) is one of the valuable oilseed crops grown in drought-prone areas worldwide. Drought severely limits peanut production and productivity significantly. METHOD AND RESULTS: In order to decipher the drought tolerance mechanism in peanut under drought stress, RNA sequencing was performed in TAG - 24 (drought tolerant genotype) and JL-24 (drought susceptible genotype). Approximately 51 million raw reads were generated from four different libraries of two genotypes subjected to drought stress exerted by 20% PEG 6000 stress and control conditions, of which ~ 41 million (80.87%) filtered reads were mapped to the Arachis hypogaea L. reference genome. The transcriptome analysis detected 1,629 differentially expressed genes (DEGs), 186 genes encoding transcription factors (TFs) and 30,199 SSR among the identified DEGs. Among the differentially expressed TF encoding genes, the highest number of genes were WRKY followed by bZIP, C2H2, and MYB during drought stress. The comparative analysis between the two genotypes revealed that TAG-24 exhibits activation of certain key genes and transcriptional factors that are involved in essential biological processes. Specifically, TAG-24 showed activation of genes involved in the plant hormone signaling pathway such as PYL9, Auxin response receptor gene, and ABA. Additionally, genes related to water deprivation such as LEA protein and those involved in combating oxidative damage such as Glutathione reductase were also found to be activated in TAG-24. CONCLUSION: This genome-wide transcription map, therefore, provides a valuable tool for future transcript profiling under drought stress and enriches the genetic resources available for this important oilseed crop.


Subject(s)
Arachis , Fabaceae , Arachis/genetics , Arachis/metabolism , Droughts , Gene Expression Profiling/methods , Fabaceae/genetics , Chromosome Mapping , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Gene Expression Regulation, Plant/genetics , Stress, Physiological/genetics
4.
Sci Rep ; 12(1): 4699, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304507

ABSTRACT

Halophiles are a class of microorganisms that thrive in environments with very high salt concentrations. The coastal regions of Saurashtra Gujarat host a diverse group of microorganisms including halophilic and halotolerant bacteria that may have plant growth promoting characteristics. Microorganisms with plant growth promoting characteristics are of immense importance in the field of agriculture and the present study was conducted to investigate the characteristics of halophilic and halotolerant bacteria isolated from agricultural soils of coastal regions of Junagadh and Porbandar districts of Saurashtra, Gujarat. A total of 15 isolated strains showed indole acetic acid production, solubilization of phosphate and potash, and nitrogen fixing capacity ranging from 18.77-33.48 µg ml-1, 50.10-106.10%, 180.42-239.92% and 0.170-0.480 g kg-1 of Jensen's agar medium, respectively, while two isolates were also found positive for siderophore production. Besides, nine out of fifteen isolates also showed positive ACC deaminase activity ranging from 0.92-5.78 µM α-ketobutyrate mg-1 h-1. The isolates were further characterized by physiological, microscopic, and biochemical tests. The halophilic and halotolerant bacterial isolates were identified by 16S rRNA gene sequencing as belonging to Halomonas pacifica, H. stenophila, and Bacillus haynesii, B. licheniformis and Oceanobacillus aidingensis respectively. The 16S rRNA partial gene sequence of two isolates belonging to H. pacifica and H. stenophila were submitted to NCBI with accession number MK955347 and MK961217 respectively. The findings of the present investigation showed that isolated bacterial halophiles possess promising plant growth promoting characteristics. Their potential as bioinoculants to alleviate salinity stress in crops and for bioremediation deserves further investigation.


Subject(s)
Bacteria , Soil Microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride/pharmacology
5.
Sci Rep ; 12(1): 276, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997160

ABSTRACT

Pearl millet is an important staple food crop of poor people and excels all other cereals due to its unique features of resilience to adverse climatic conditions. It is rich in micronutrients like iron and zinc and amenable for focused breeding for these micronutrients along with high yield. Hence, this is a key to alleviate malnutrition and ensure nutritional security. This study was conducted to identify and validate candidate genes governing grain iron and zinc content enabling the desired modifications in the genotypes. Transcriptome sequencing using ION S5 Next Generation Sequencer generated 43.5 million sequence reads resulting in 83,721 transcripts with N50 of 597 bp and 84.35% of transcripts matched with the pearl millet genome assembly. The genotypes having high iron and zinc showed differential gene expression during different stages. Of which, 155 were up-regulated and 251 were down-regulated while during flowering stage and milking stage 349 and 378 transcripts were differentially expressed, respectively. Gene annotation and GO term showed the presence of transcripts involved in metabolic activities associated with uptake and transport of iron and zinc. Information generated will help in gaining insights into iron and zinc metabolism and develop genotypes with high yield, grain iron and zinc content.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Genes, Plant , Genome, Plant , Iron/metabolism , Membrane Transport Proteins/genetics , Pennisetum/genetics , Plant Proteins/genetics , Transcriptome , Zinc/metabolism , Gene Expression Regulation, Plant , Membrane Transport Proteins/metabolism , Nutritive Value , Pennisetum/growth & development , Pennisetum/metabolism , Plant Proteins/metabolism , RNA-Seq
6.
Sci Rep ; 11(1): 20620, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663808

ABSTRACT

Little millet is a climate-resilient and high-nutrient value plant. The lack of molecular markers severely limits the adoption of modern genomic approaches in millet breeding studies. Here the transcriptome of three samples were sequenced. A total of 4443 genic-SSR motifs were identified in 30,220 unigene sequences. SSRs were found at a rate of 12.25 percent, with an average of one SSR locus per 10 kb. Among different repeat motifs, tri-nucleotide repeat (66.67) was the most abundant one, followed by di- (27.39P), and tetra- (3.83P) repeats. CDS contained fewer motifs with the majority of tri-nucleotides, while 3' and 5' UTR carry more motifs but have shorter repeats. Functional annotation of unigenes containing microsatellites, revealed that most of them were linked to metabolism, gene expression regulation, and response to environmental stresses. Fifty primers were randomly chosen and validated in five little millet and 20 minor millet genotypes; 48% showed polymorphism, with a high transferability (70%) rate. Identified microsatellites can be a noteworthy resource for future research into QTL-based breeding, genetic resource conservation, MAS selection, and evolutionary genetics.


Subject(s)
Microsatellite Repeats/genetics , Panicum/genetics , DNA Primers/genetics , Expressed Sequence Tags , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genetic Markers/genetics , Genome, Plant/genetics , Genomics , Genotype , Nucleotide Motifs/genetics , Panicum/metabolism , Phylogeny , Plant Breeding/methods , Polymorphism, Genetic/genetics , Transcriptome/genetics
7.
3 Biotech ; 10(6): 284, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32550103

ABSTRACT

The goal of this study was to identify differentially expressed genes (DEGs) responsible for peanut plant (Arachis hypogaea) defence against Puccinia arachidis (causative agent of rust disease). Genes were identified using a high-throughput RNA-sequencing strategy. In total, 86,380,930 reads were generated from RNA-Seq data of two peanut genotypes, JL-24 (susceptible), and GPBD-4 (resistant). Gene Ontology (GO) and KEGG analysis of DEGs revealed essential genes and their pathways responsible for defence response to P. arachidis. DEGs uniquely upregulated in resistant genotype included pathogenesis-related (PR) proteins, MLO such as protein, ethylene-responsive factor, thaumatin, and F-box, whereas, other genes down-regulated in susceptible genotype were Caffeate O-methyltransferase, beta-glucosidase, and transcription factors (WRKY, bZIP, MYB). Moreover, various genes, such as Chitinase, Cytochrome P450, Glutathione S-transferase, and R genes such as NBS-LRR were highly up-regulated in the resistant genotype, indicating their involvement in the plant defence mechanism. RNA-Seq analysis data were validated by RT-qPCR using 15 primer sets derived from DEGs producing high correlation value (R 2 = 0.82). A total of 4511 EST-SSRs were identified from the unigenes, which can be useful in evaluating genetic diversity among genotypes, QTL mapping, and plant variety improvement through marker-assisted breeding. These findings will help to understand the molecular defence mechanisms of the peanut plant in response to P. arachidis infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...