Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 347: 140688, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37977530

ABSTRACT

Common isotherm and kinetic models cannot describe the pH-dependent sorption of heavy metal cations by biochar. In this paper, we evaluated a pH-dependent, equilibrium/kinetic model for describing the sorption of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) by poultry litter-derived biochar (PLB). We performed sorption experiments across a range of solution pH, initial metal concentration, and reaction time. The sorption of all five metals increased with increasing pH. For Cd, Cu, and Pb, kinetics experiments demonstrated that sorption rates were greater at pH 6.5 than at pH 4.5. For each metal, all sorption data were described using single set of four adjustable parameters. Sorption edge and isotherm data were well described with R2 > 0.93 in all cases. Time-dependent sorption was well described (R2 ≥ 0.90) for all metals except Pb (R2 = 0.77). We then used the best-fit model parameters to calculate linear distribution coefficients (KD) and equilibration times as a function of pH and initial solution concentration. These calculations provide a more robust way of characterizing biochar affinity for metal cations than Freundlich distribution coefficients or Langmuir sorption capacity. Because this model can characterize metal cation sorption by biochar across a wider range of reaction conditions than traditional isotherm or kinetic models, it is better suited for estimating metal cation/biochar interactions in engineered or natural systems.


Subject(s)
Cadmium , Metals, Heavy , Animals , Poultry , Lead , Hydrogen-Ion Concentration , Adsorption , Metals, Heavy/chemistry , Cations , Kinetics
2.
J Contam Hydrol ; 252: 104108, 2023 01.
Article in English | MEDLINE | ID: mdl-36404181

ABSTRACT

The mobility of contaminants in soil is controlled by sorption reactions which can be affected by the presence of other solutes that compete for sorption sites. The ability to model such effects is necessary for evaluating the environmental risk of a given contaminant. In this study, the competitive sorption and transport of nickel (Ni) and zinc (Zn) in Olivier and Windsor soils was investigated using batch equilibration and miscible displacement experiments. During batch experiments, the sorption of Ni and Zn was mutually reduced in multicomponent systems, indicating that the metal cations compete for sorption sites. When applied concurrently, the retardation of both ions decreased and peak effluent concentrations increased relative to single ion experiments, demonstrating that competition increased the mobility of both ions during miscible displacement experiments. A novel Freundlich-type multicomponent isotherm (CDI) and its kinetic analog (CDIT) were developed and compared to the commonly used SRS isotherm and SRS-based kinetic approach (SRST) in describing the experimental data. The CDI provided a superior description of the competitive batch data, especially at low surface coverage, and may therefore be more applicable to multicomponent sorption than the SRS. The Olivier and Windsor transport data were best described by the CDIT and SRST, respectively, however, both models generally described the data well. Since both approaches gave comparable descriptions of the transport data while the CDI outperformed the SRS in describing the batch data, the CDI/CDIT may be more generally applicable to multicomponent systems and warrants further study.


Subject(s)
Metals, Heavy , Nickel , Nickel/analysis , Soil , Zinc/analysis , Ions , Adsorption , Metals, Heavy/analysis
3.
Biochar ; 5(64): 1-14, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-38269399

ABSTRACT

Biochars with a high affinity for phosphorus (P) are promising soil amendments for reducing P in agricultural run-off. Poultry litter (PL) is an abundant biochar feedstock. However, PL-derived biochars are typically high in soluble P and therefore require chemical modification to become effective P sorbents. This study investigated the effect of magnesium (Mg) activation on extractable P (EP) and P sorption capacities of PL-derived biochars. Biochar was produced at 500-900 °C from PL activated with 0-1 M Mg. Three differentially aged PL feedstocks were evaluated (1-, 3-5-, and 7-9-year-old). Increased Mg activation level and pyrolysis temperature both resulted in EP reductions from the biochars. Specifically, biochars produced at temperatures ≥ 700 °C from PL activated with ≥ 0.25 M Mg had negligible EP. X-ray diffractograms indicated that increased Mg loading favored the formation of stable Mg3(PO4)2 phases while increasing temperature favored the formation of both Mg3(PO4)2 and Ca5(PO4)3OH. Maximum P sorption capacities (Pmax) of the biochars were estimated by fitting Langmuir isotherms to batch sorption data and ranged from 0.66-10.35 mg g-1. Average Pmax values were not affected by PL age or pyrolysis temperature; however, biochars produced from 1 M Mg-activated PL did have significantly higher average Pmax values (p < 0.05), likely due to a greater abundance of MgO. Overall, the results demonstrated that Mg activation is an effective strategy for producing PL-derived biochars with the potential ability to reduce P loading into environmentally sensitive ecosystems.

4.
J Environ Qual ; 51(6): 1168-1180, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35985791

ABSTRACT

The behavior of metal cations in oxide-dominated systems is controlled by sorption reactions, which in turn depend on pH. Descriptions of such reactions are of interest for contaminant monitoring or remediation efforts; however, widely used isotherms such as Freundlich or Langmuir neglect the effect of pH and are therefore limited in their applicability. Two pH-dependent isotherms and their kinetic analogs were developed and evaluated regarding their ability to describe equilibrium and time-dependent sorption of Ni and Zn by Mn oxide-coated sand (MOCS). The sorption of Ni and Zn by MOCS at pH 4.0, 5.5, and 7.0 was investigated using batch equilibration and stirred-flow techniques. The affinity of MOCS for either metal cation was highly pH dependent, with greater affinity at higher pH. Both isotherms described the batch data well. Flow interruption during stirred-flow experiments indicated that chemical nonequilibrium existed between solution and sorbed phases of both Ni and Zn and that such nonequilibrium was greater with increasing pH. Both kinetic models provided good descriptions of the solution data from stirred-flow experiments and correctly captured the effect of pH on chemical nonequilibrium. These models offer simple alternatives to surface complexation approaches and are expected to be easily applied to describe equilibrium and time-dependent sorption of a wide range of metal cations by variably charged minerals or oxide-coated media.


Subject(s)
Oxides , Sand , Kinetics , Zinc
5.
J Environ Qual ; 48(1): 156-163, 2019 01.
Article in English | MEDLINE | ID: mdl-30640360

ABSTRACT

The purpose of this study was to determine the effect of PO on the sorption and transport of glyphosate [-(phosphonomethyl) glycine, GPS] in soils. The results of batch experiments indicated significant competition between PO and GPS in two different soils, with PO being preferentially sorbed. The 24-h Freundlich partitioning coefficients for GPS sorption were decreased by 50 to 60% with PO in solution. High sorptive capacities exhibited by soils in the presence of PO suggest the existence of both competitive and ion specific sites in either soil. Miscible displacement transport studies indicated limited effects of competition when GPS was applied in conjunction with or subsequent to pulses of PO. However, when a PO pulse was applied after the application of a GPS pulse, a secondary GPS breakthrough was observed where an additional 4% of the applied herbicide mass was recovered in the effluent solution. This is likely attributed to the PO-mediated displacement of GPS bound to competitive sites. These results are further emphasized by the distribution of residual herbicide in this column, with enrichment of mass at lower depths in the column and a corresponding decrease in GPS mass closer to the column surface. These results indicate that the timing of inorganic P fertilizers relative to GPS applications has a significant impact on the fate of the herbicide in soils. In particular, these findings suggest that GPS may be more liable to leaching in scenarios in which P fertilizers are applied after the application of GPS-based herbicidal formulations.


Subject(s)
Soil Pollutants , Soil , Adsorption , Glycine/analogs & derivatives , Phosphates , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...