Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol Pharmacol ; 67(5): 777-783, 2016 Oct.
Article in English | MEDLINE | ID: mdl-28011958

ABSTRACT

The formation of biofilms by Candida and the increasing resistance of Candida species to antifungals contribute to the high recurrence rates of denture stomatitis. This increase has stimulated an interest in antimicrobial photodynamic therapy (aPDT) as an alternative treatment. We examined the photoactivity of the porphyrin-based photosensitizer, TMP-1363, against biofilms of C. albicans, C. glabrata, C. tropicalis and C. parapsilosis, and the effect of the combined use of miconazole and aPDT. Biofilms of three American Type Culture Collection (ATCC) strains and four clinical isolates developed on poly(methyl methacrylate) (PMMA) disks, were incubated with miconazole, followed by treatment with TMP-1363 for 30 min at 37°C. The plates were exposed to broadband visible light at a distance of 10 cm to the plate, for 30 min (irradiance at the surface of the plate: 32.5 mW/cm2). The metabolic activity of the biofilms was measured by the XTT assay. ATCC strains and C. glabrata 7531/06 were not sensitive to TMP-aPDT, whereas the metabolic activities of the remaining three clinical isolates were reduced to 64.2 ± 5.5% of controls. Miconazole at 25 µg/ml decreased the viability of all strains except the ATTCC strain C. albicans MYA274; however its combination with aPDT was effective against this strain, suggesting a synergistic interaction. Effects of miconazole and aPDT on C. albicans MYA 2732, C. albicans 6122/06 were additive. With C. tropicalis and C. parapsilosis, the combined treatment had a higher, but not entirely additive, cytotoxic effect. The combined use of miconazole and TMP-aPDT is advantageous in the treatment of biofilms of a number of Candida species and strains, but not all. The molecular basis of this differential response is not known.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Candida/radiation effects , Miconazole/pharmacology , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Biofilms/drug effects , Biofilms/radiation effects , Candida/physiology , Light , Photochemotherapy
2.
J Oral Implantol ; 32(3): 103-9, 2006.
Article in English | MEDLINE | ID: mdl-16836173

ABSTRACT

Adult mesenchymal stem cells (MSCs) are used in contemporary strategies for tissue engineering. The MSC is able to form bone following implantation as undifferentiated cells adherent to hydroxyapatite (HA)/tricalcium phosphate (TCP) scaffolds. Previous investigators have demonstrated that human MSCs (hMSCs) can be differentiated to osteoblasts in vitro by the inclusion of vitamin D and ascorbic acid. The aim of this study was to compare the osteogenic potential of predifferentiated and undifferentiated bone marrow-derived, culture-expanded hMSCs adherent to synthetic HA/TCP (60%/40%) following subcutaneous engraftment in severe combined immunodeficiency (SCID) mice. During the final 3 days of culture, cells were grown in Dulbecco's modified Eagle's medium containing 10% fetal calf serum and antibiotics or media containing 25-mM calcium supplementation with vitamin D and ascorbic acid. Four weeks following implantation in SCID mice, scoring analysis of bone formation within the cubes revealed the absence of bone formation in unloaded cubes. Bone formation compared by a qualitative bone index was 7.23% for undifferentiated cells compared to 5.20% for differentiated cells. Minimal resorption was observed at this early time point. In this ectopic model, predifferentiation using a combination of vitamin D and ascorbic acid failed to increase subsequent bone formation by implanted cells. Following implantation of hMSCs adherent to an osteoconductive scaffold, host factors may contribute dominant osteoinductive signals or impose inhibitory signals to control the fate of the implanted cell. Predifferentiation strategies require confirmation in vivo.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Tissue Engineering/methods , Vitamin D/pharmacology , Vitamins/pharmacology , Adult , Animals , Calcium Phosphates , Cell Culture Techniques , Cell Differentiation/drug effects , Cells, Cultured , Durapatite , Humans , Implants, Experimental , Mice , Mice, SCID , Osteoblasts/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...