Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 223: 106979, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944284

ABSTRACT

Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.

2.
Int J Equity Health ; 21(1): 183, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36536404

ABSTRACT

BACKGROUND: Biomedical technologies have the potential to be advantageous in remote communities. However, information about barriers faced by users of technology in general and in remote Indigenous communities is scarce. The purpose of this study was to characterize the leading challenges faced by researchers who have used biomedical technologies in the Peruvian Amazon. METHODS: This exploratory, qualitative study with a phenomenological approach depicts the lived experience of participants who were researchers with experience working with biomedical technologies in the Peruvian Amazon in the past five years. Analysis was based on three core themes: design, implementation, and acceptability. Sub-themes included environment, community, and culture. Of the 24 potential participants identified and contacted, 14 agreed to participate, and 13 met inclusion criteria and completed semi-structured interviews. Results were sent to each participant with the opportunity to provide feedback and partake in a 30-minute validation meeting. Five participants consented to a follow-up meeting to validate the results and provide further understanding. RESULTS: Participants recognized significant challenges, including technologies designed out-of-context, difficulty transporting the technologies through the Amazon, the impact of the physical environment (e.g., humidity, flooding), and limited existing infrastructure, such as electricity and appropriately trained health personnel. Participants also identified cultural factors, including the need to address past experiences with technology and health interventions, understand and appropriately communicate community benefits, and understand the effect of demographics (e.g., age, education) on the acceptance and uptake of technology. Complementary challenges, such as corruption in authority and waste disposal, and recommendations for technological and health interventions such as co-design were also identified. CONCLUSIONS: This study proposes that technological and health interventions without efforts to respect local cultures and health priorities, or understand and anticipate contextual challenges, will not meet its goal of improving access to healthcare in remote Amazon communities. Furthermore, the implications of corruption on health services, and improper waste disposal on the environment may lead to more detrimental health inequities.


Subject(s)
Delivery of Health Care , Health Services , Humans , Peru , Biomedical Technology
3.
Front Public Health ; 8: 526468, 2020.
Article in English | MEDLINE | ID: mdl-33072692

ABSTRACT

Human movement affects malaria epidemiology at multiple geographical levels; however, few studies measure the role of human movement in the Amazon Region due to the challenging conditions and cost of movement tracking technologies. We developed an open-source low-cost 3D printable GPS-tracker and used this technology in a cohort study to characterize the role of human population movement in malaria epidemiology in a rural riverine village in the Peruvian Amazon. In this pilot study of 20 participants (mean age = 40 years old), 45,980 GPS coordinates were recorded over 1 month. Characteristic movement patterns were observed relative to the infection status and occupation of the participants. Applying two analytical animal movement ecology methods, utilization distributions (UDs) and integrated step selection functions (iSSF), we showed contrasting environmental selection and space use patterns according to infection status. These data suggested an important role of human movement in the epidemiology of malaria in the Peruvian Amazon due to high connectivity between villages of the same riverine network, suggesting limitations of current community-based control strategies. We additionally demonstrate the utility of this low-cost technology with movement ecology analysis to characterize human movement in resource-poor environments.


Subject(s)
Malaria , Rivers , Adult , Animals , Cohort Studies , Humans , Malaria/epidemiology , Peru/epidemiology , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...