Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798458

ABSTRACT

Dystonia is the 3rd most common movement disorder. Dystonia is acquired through either injury or genetic mutations, with poorly understood molecular and cellular mechanisms. Eukaryotic initiation factor alpha (eIF2α) controls cell state including neuronal plasticity via protein translation control and expression of ATF4. Dysregulated eIF2α phosphorylation (eIF2α-P) occurs in dystonia patients and models including DYT1, but the consequences are unknown. We increased/decreased eIF2α-P and tested motor control and neuronal properties in a Drosophila model. Bidirectionally altering eIF2α-P produced dystonia-like abnormal posturing and dyskinetic movements in flies. These movements were also observed with expression of the DYT1 risk allele. We identified cholinergic and D2-receptor neuroanatomical origins of these dyskinetic movements caused by genetic manipulations to dystonia molecular candidates eIF2α-P, ATF4, or DYT1, with evidence for decreased cholinergic release. In vivo, increased and decreased eIF2α-P increase synaptic connectivity at the NMJ with increased terminal size and bouton synaptic release sites. Long-term treatment of elevated eIF2α-P with ISRIB restored adult longevity, but not performance in a motor assay. Disrupted eIF2α-P signaling may alter neuronal connectivity, change synaptic release, and drive motor circuit changes in dystonia.

2.
Dis Model Mech ; 16(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37470098

ABSTRACT

AGAP1 is an Arf1 GTPase-activating protein that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report three new cases in which individuals had microdeletion variants in AGAP1. The affected individuals had intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 variant-mediated neurodevelopmental impairments using the Drosophila ortholog CenG1a. We discovered reduced axon terminal size, increased neuronal endosome abundance and elevated autophagy compared to those in controls. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in the phosphorylation of the integrated stress-response protein eIF2α (or eIF2A) and inability to further increase eIF2α phosphorylation with subsequent cytotoxic stressors. CenG1a-mutant flies had increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response and leaving AGAP1-deficient cells susceptible to a variety of second-hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders.


Subject(s)
Gene-Environment Interaction , Intellectual Disability , Humans , Endosomes , Intellectual Disability/genetics , GTPase-Activating Proteins
3.
bioRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36778426

ABSTRACT

AGAP1 is an Arf1 GAP that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report 3 new individuals with microdeletion variants in AGAP1 . Affected individuals have intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 neurodevelopmental impairments using the Drosophila ortholog, CenG1a . We discovered reduced axon terminal size, increased neuronal endosome abundance, and elevated autophagy at baseline. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in phosphorylation of the integrated stress-response protein eIF2α and inability to further increase eIF2α-P with subsequent cytotoxic stressors. CenG1a -mutant flies have increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response, and leaving AGAP1-deficient cells susceptible to a variety of second hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders. Summary statement: We describe 3 additional patients with heterozygous AGAP1 deletion variants and use a loss of function Drosophila model to identify defects in synaptic morphology with increased endosomal sequestration, chronic autophagy induction, basal activation of eIF2α-P, and sensitivity to environmental stressors.

4.
Neurol Genet ; 7(4): e602, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34345675

ABSTRACT

OBJECTIVE: To determine whether mutations reported for ZDHHC15 can cause mixed neurodevelopmental disorders, we performed both functional studies on variant pathogenicity and ZDHHC15 function in animal models. METHODS: We examined protein function of 4 identified variants in ZDHHC15 in a yeast complementation assay and locomotor defects of loss-of-function genotypes in a Drosophila model. RESULTS: Although we assessed multiple patient variants, only 1 (p.H158R) affected protein function. We report a patient with a diagnosis of hypotonic cerebral palsy, autism, epilepsy, and intellectual disability associated with this bona fide damaging X-linked variant. Features include tall forehead with mild brachycephaly, down-slanting palpebral fissures, large ears, long face, facial muscle hypotonia, high-arched palate with dental crowding, and arachnodactyly. The patient had mild diminished cerebral volume, with left-sided T2/FLAIR hyperintense periatrial ovoid lesion. We found that loss-of-function mutations in orthologs of this gene cause flight and coordinated movement defects in Drosophila. CONCLUSIONS: Our findings support a functional expansion of this gene to a role in motor dysfunction. Although ZDHHC15 mutations represent a rare cause of neurodevelopmental disability, candidate variants need to be carefully assessed before pathogenicity can be determined.

5.
Hum Mol Genet ; 26(18): 3545-3552, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28911200

ABSTRACT

Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects.


Subject(s)
Cardiomyopathy, Dilated/genetics , Peptide Elongation Factor 1/genetics , Animals , Cardiomyopathy, Dilated/metabolism , Developmental Disabilities/genetics , Epilepsy/genetics , Failure to Thrive/genetics , Genomics , Homozygote , Humans , Models, Animal , Mutation , Mutation, Missense/genetics , Peptide Elongation Factor 1/metabolism , Protein Isoforms/genetics , Saccharomyces cerevisiae/metabolism , Zebrafish/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...