Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Nat Commun ; 14(1): 4994, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591879

ABSTRACT

Simultaneous imaging of nine fluorescent proteins is demonstrated in a single acquisition using fluorescence lifetime imaging microscopy combined with pulsed interleaved excitation of three laser lines. Multicolor imaging employing genetically encodable fluorescent proteins permits spatio-temporal live cell imaging of multiple cues. Here, we show that multicolor lifetime imaging allows visualization of quadruple labelled human immunodeficiency viruses on host cells that in turn are also labelled with genetically encodable fluorescent proteins. This strategy permits to simultaneously visualize different sub-cellular organelles (mitochondria, cytoskeleton, and nucleus) during the process of virus entry with the potential of imaging up to nine different spectral channels in living cells.


Subject(s)
HIV-1 , Humans , HIV-1/genetics , Biological Transport , Cell Nucleus , Coloring Agents , Microscopy, Fluorescence
2.
Microscopy (Oxf) ; 72(3): 164-177, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-36762762

ABSTRACT

Identifying initial events of mucosal entry of human immunodeficiency virus type-1 (HIV-1) in laboratory-based, physiologically relevant and high-throughput contexts may aid in designing effective strategies to block local transmission and spread of HIV-1. Several paradigms have been posited for how HIV-1 crosses mucosal barriers to establish infection based on two dimensional (2D) culture-based or animal-based models. Nevertheless, despite these models stemming from 2D culture and animal studies, monolayers of cells poorly replicate the complex niche that influences viral entry at mucosal surfaces, whereas animal models often inadequately reproduce human disease pathophysiology and are prohibitively expensive. Organoids, having never been directly utilized in HIV-1 transmission investigations, may offer a compromise between 2D culture and animal models as they provide a platform that mimics the biophysical and biochemical niche of mucosal tissues. Importantly, observation of events downstream of viral inoculation is potentially accessible to researchers via an array of microscopy techniques. Because of the potential insights organoids may provide in this context, we offer this review to highlight key physiological factors of HIV-1 transmission at common mucosal sites and a discussion to highlight how many of these factors can be recapitulated in organoids, their current limitations and what questions can initially be addressed, particularly using a selective inclusion of quantitative light microscopy techniques. Harnessing organoids for direct observation of HIV-1 entry at mucosal sites may uncover potential therapeutic targets which prevent the establishment of HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Animals , Humans , HIV-1/physiology , HIV Infections/prevention & control , Mucous Membrane , Microscopy
3.
Biol Cell ; 115(3): e2200082, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36440600

ABSTRACT

Single Virus Tracking (SVT) is a key technique to understand how individual viral particles evolve during the infection cycle. In the case of the human immunodeficiency virus (HIV-1), this technology, which can be employed using a simple and affordable wide-field microscope, has proven to be very useful in the first steps of infection, such as the kinetics of the fusion reaction or the point of fusion within live cells. Here, we describe how SVT in combination with other spectral imaging approaches is a powerful technique to illuminate crucial mechanistic aspects of the HIV-1 fusion reaction. We also stress the role of our laboratory in elucidating a few mechanistic aspects of retroviral fusion employing SVT such as: (i) the role of dynamin, (ii) how metabolism modulates membrane composition and cholesterol and its impact in fusion, (iii) the importance of envelope glycoprotein (Env) intra- and inter-molecular dynamics for neutralization, or (iv) the time-resolved fusion stoichiometry in three characteristic steps for the HIV-1 prefusion step. These observations constitute a good testimony of the complexity of retroviral fusion and show the strength of SVT when applied to live cells and combined with quantitative spectral approaches. Finally, we propose several crucial remaining questions around HIV-1 fusion and how the combined use of these technologies, always in live cells, will be able to shed light into the intricacies of arguably the most important step of the HIV-1 infection cycle.


Subject(s)
HIV Infections , HIV-1 , Humans , Virus Internalization , Membrane Fusion
4.
Nat Methods ; 19(12): 1524-1525, 2022 12.
Article in English | MEDLINE | ID: mdl-36357693
5.
Biochem Biophys Res Commun ; 626: 79-84, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35973378

ABSTRACT

CD44 mRNA contains nine consecutive cassette exons, v2 to v10. Upon alternative splicing, several isoforms are produced with different impacts on tumor biology. Here, we demonstrate the involvement of the RNA-binding proteins CELF1 and ELAVL1 in the control of CD44 splicing. We show by FRET-FLIM that these proteins directly interact in the nucleus. By combining RNAi-mediated depletion and exon array hybridization in HeLa cells, we observe that the exons v7 to v10 of CD44 are highly sensitive to CELF1 and ELAVL1 depletion. We confirm by RT-PCR that CELF1 and ELAVL1 together stimulate the inclusion of these exons in CD44 mRNA. Finally, we show in eight different tumor types that high expression of CELF1 and/or ELAVL1 is correlated with the inclusion of CD44 variable exons. These data point to functional interactions between CELF1 and ELAVL1 in the control of CD44 splicing in human cancers.


Subject(s)
Alternative Splicing , Hyaluronan Receptors , CELF1 Protein , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Exons/genetics , HeLa Cells , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
Commun Biol ; 4(1): 1228, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707229

ABSTRACT

The HIV-1 envelope glycoprotein (Env) mediates viral entry into the host cell. Although the highly dynamic nature of Env intramolecular conformations has been shown with single molecule spectroscopy in vitro, the bona fide Env intra- and intermolecular mechanics when engaged with live T cells remains unknown. We used two photon fast fluorescence lifetime imaging detection of single-molecule Förster Resonance Energy Transfer occurring between fluorescent labels on HIV-1 Env on native virions. Our observations reveal Env dynamics at two levels: transitions between different intramolecular conformations and intermolecular interactions between Env within the viral membrane. Furthermore, we show that three broad neutralizing anti-Env antibodies directed to different epitopes restrict Env intramolecular dynamics and interactions between adjacent Env molecules when engaged with living T cells. Importantly, our results show that Env-Env interactions depend on efficient virus maturation, and that is disrupted upon binding of Env to CD4 or by neutralizing antibodies. Thus, this study illuminates how different intramolecular conformations and distribution of Env molecules mediate HIV-1 Env-T cell interactions in real time and therefore might control immune evasion.


Subject(s)
HIV-1/physiology , T-Lymphocytes/virology , Viral Proteins/metabolism , Virion/metabolism , env Gene Products, Human Immunodeficiency Virus/metabolism , Virus Internalization
7.
EMBO Mol Med ; 13(8): e13901, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34289240

ABSTRACT

HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+ /NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a "shock and kill effect" decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Down-Regulation , Glycolysis , Humans , Oxidative Stress , Proteomics , Virus Activation , Virus Latency
8.
PLoS Pathog ; 17(5): e1009584, 2021 May.
Article in English | MEDLINE | ID: mdl-33970974

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1008359.].

9.
Nat Chem Biol ; 17(1): 30-38, 2021 01.
Article in English | MEDLINE | ID: mdl-32778846

ABSTRACT

Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein-protein interactions by live-cell fluorescence microscopy.


Subject(s)
Biosensing Techniques , Fluorescent Dyes/chemistry , Molecular Biology/methods , Optical Imaging/methods , Plasmids/chemistry , Staining and Labeling/methods , Animals , Benzylidene Compounds/chemistry , COS Cells , Chlorocebus aethiops , Cloning, Molecular , Color , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescent Dyes/metabolism , Gene Expression , Oligonucleotides/genetics , Oligonucleotides/metabolism , Plasmids/metabolism , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Zebrafish
10.
Trends Immunol ; 41(12): 1056-1059, 2020 12.
Article in English | MEDLINE | ID: mdl-33148466

ABSTRACT

New approaches in single molecule spectroscopy and microscopy are able to resolve the spatial and temporal resolution of T cell receptor signaling in the context of immune responses to HIV-1 infection. These approaches need to be complemented with novel techniques that endogenously tag the protein or proteins of interest, yet avoid overexpression, to image protein dynamics under physiological conditions.


Subject(s)
HIV-1 , Immunity , Microscopy , Staining and Labeling , HIV-1/immunology , Humans , Immunity/immunology , Microscopy/trends , Proteins/chemistry , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/physiology , Staining and Labeling/methods , Staining and Labeling/trends
11.
Elife ; 92020 10 28.
Article in English | MEDLINE | ID: mdl-33112230

ABSTRACT

The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline-rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was previously linked to paroxysmal neurological disorders in humans. Here, we show that glycine-305 and the homologous site in IFITM3, glycine-95, drive protein oligomerization from within a GxxxG motif. Mutation of glycine-95 (and to a lesser extent, glycine-91) disrupted IFITM3 oligomerization and reduced its antiviral activity against Influenza A virus. An oligomerization-defective variant was used to reveal that IFITM3 promotes membrane rigidity in a glycine-95-dependent and amphipathic helix-dependent manner. Furthermore, a compound which counteracts virus inhibition by IFITM3, Amphotericin B, prevented the IFITM3-mediated rigidification of membranes. Overall, these data suggest that IFITM3 oligomers inhibit virus-cell fusion by promoting membrane rigidity.


Subject(s)
Influenza A virus/physiology , Influenza, Human/immunology , Membrane Proteins/chemistry , Membrane Proteins/immunology , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/immunology , Amino Acid Motifs , Cell Line , HEK293 Cells , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza, Human/virology , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , Virus Internalization
12.
EMBO J ; 39(13): e102926, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32500924

ABSTRACT

Semaphorin ligands interact with plexin receptors to contribute to functions in the development of myriad tissues including neurite guidance and synaptic organisation within the nervous system. Cell-attached semaphorins interact in trans with plexins on opposing cells, but also in cis on the same cell. The interplay between trans and cis interactions is crucial for the regulated development of complex neural circuitry, but the underlying molecular mechanisms are uncharacterised. We have discovered a distinct mode of interaction through which the Drosophila semaphorin Sema1b and mouse Sema6A mediate binding in cis to their cognate plexin receptors. Our high-resolution structural, biophysical and in vitro analyses demonstrate that monomeric semaphorins can mediate a distinctive plexin binding mode. These findings suggest the interplay between monomeric vs dimeric states has a hereto unappreciated role in semaphorin biology, providing a mechanism by which Sema6s may balance cis and trans functionalities.


Subject(s)
Cell Adhesion Molecules/chemistry , Drosophila Proteins/chemistry , Nerve Tissue Proteins/chemistry , Semaphorins/chemistry , Animals , COS Cells , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Chlorocebus aethiops , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Structure, Quaternary , Semaphorins/genetics , Semaphorins/metabolism , Structure-Activity Relationship
13.
Structure ; 28(5): 507-515.e5, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32187531

ABSTRACT

The transmembrane protein OTK plays an essential role in plexin and Wnt signaling during Drosophila development. We have determined a crystal structure of the last three domains of the OTK ectodomain and found that OTK shows high conformational flexibility resulting from mobility at the interdomain interfaces. We failed to detect direct binding between Drosophila Plexin A (PlexA) and OTK, which was suggested previously. We found that, instead of PlexA, OTK directly binds semaphorin 1a. Our binding analyses further revealed that glycosaminoglycans, heparin and heparan sulfate, are ligands for OTK and thus may play a role in the Sema1a-PlexA axon guidance system.


Subject(s)
Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/metabolism , Animals , CHO Cells , COS Cells , Cell Membrane/metabolism , Chlorocebus aethiops , Cricetulus , Crystallography, X-Ray , Drosophila Proteins/genetics , Fluorescence Resonance Energy Transfer , Glycosaminoglycans/metabolism , HEK293 Cells , Heparin/metabolism , Heparitin Sulfate/metabolism , Humans , Nerve Tissue Proteins/metabolism , Protein Conformation , Protein Domains , Protein Interaction Maps , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Cell Surface/metabolism , Semaphorins/metabolism
14.
Viruses ; 12(2)2020 02 12.
Article in English | MEDLINE | ID: mdl-32059513

ABSTRACT

The first steps of human immunodeficiency virus (HIV) infection go through the engagement of HIV envelope (Env) with CD4 and coreceptors (CXCR4 or CCR5) to mediate viral membrane fusion between the virus and the host. New approaches are still needed to better define both the molecular mechanistic underpinnings of this process but also the point of fusion and its kinetics. Here, we have developed a new method able to detect and quantify HIV-1 fusion in single live cells. We present a new approach that employs fluorescence lifetime imaging microscopy (FLIM) to detect Förster resonance energy transfer (FRET) when using the ß-lactamase (BlaM) assay. This novel approach allows comparing different populations of single cells regardless the concentration of CCF2-AM FRET reporter in each cell, and more importantly, is able to determine the relative amount of viruses internalized per cell. We have applied this approach in both reporter TZM-bl cells and primary T cell lymphocytes.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , HIV-1/physiology , Optical Imaging/methods , Single-Cell Analysis/methods , T-Lymphocytes/virology , Virus Internalization , Cell Line , Cells, Cultured , HEK293 Cells , Humans , Kinetics , T-Lymphocytes/physiology , beta-Lactamases/metabolism
15.
PLoS Pathog ; 16(2): e1008359, 2020 02.
Article in English | MEDLINE | ID: mdl-32084246

ABSTRACT

There has been resurgence in determining the role of host metabolism in viral infection yet deciphering how the metabolic state of single cells affects viral entry and fusion remains unknown. Here, we have developed a novel assay multiplexing genetically-encoded biosensors with single virus tracking (SVT) to evaluate the influence of global metabolic processes on the success rate of virus entry in single cells. We found that cells with a lower ATP:ADP ratio prior to virus addition were less permissive to virus fusion and infection. These results indicated a relationship between host metabolic state and the likelihood for virus-cell fusion to occur. SVT revealed that HIV-1 virions were arrested at hemifusion in glycolytically-inactive cells. Interestingly, cells acutely treated with glycolysis inhibitor 2-deoxyglucose (2-DG) become resistant to virus infection and also display less surface membrane cholesterol. Addition of cholesterol in these in glycolytically-inactive cells rescued the virus entry block at hemifusion and enabled completion of HIV-1 fusion. Further investigation with FRET-based membrane tension and membrane order reporters revealed a link between host cell glycolytic activity and host membrane order and tension. Indeed, cells treated with 2-DG possessed lower plasma membrane lipid order and higher tension values, respectively. Our novel imaging approach that combines lifetime imaging (FLIM) and SVT revealed not only changes in plasma membrane tension at the point of viral fusion, but also that HIV is less likely to enter cells at areas of higher membrane tension. We therefore have identified a connection between host cell glycolytic activity and membrane tension that influences HIV-1 fusion in real-time at the single-virus fusion level in live cells.


Subject(s)
HIV-1/metabolism , Membrane Fusion/physiology , Viral Envelope Proteins/metabolism , CD4-Positive T-Lymphocytes , Cell Fusion , Cell Membrane/metabolism , Glycolysis/physiology , HIV-1/physiology , Humans , Membrane Fusion/genetics , Primary Cell Culture , Single-Cell Analysis , Virion/metabolism , Virus Internalization
17.
Nat Struct Mol Biol ; 26(6): 526, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31073171

ABSTRACT

In the version of this article initially published, the label above the top right plot in Fig. 3b (HXB2-Alexa Fluor 488) was incorrect. The correct label is 'HXB2-Alexa Fluor 405'. The error has been corrected in the HTML and PDF versions of the article.

18.
Nucleic Acids Res ; 47(12): 6184-6194, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31081027

ABSTRACT

Chromatin accessibility to protein factors is critical for genome activities. However, the dynamic properties of chromatin higher-order structures that regulate its accessibility are poorly understood. Here, we took advantage of the microenvironment sensitivity of the fluorescence lifetime of EGFP-H4 histone incorporated in chromatin to map in the nucleus of live cells the dynamics of chromatin condensation and its direct interaction with a tail acetylation recognition domain (the double bromodomain module of human TAFII250, dBD). We reveal chromatin condensation fluctuations supported by mechanisms fundamentally distinct from that of condensation. Fluctuations are spontaneous, yet their amplitudes are affected by their sub-nuclear localization and by distinct and competing mechanisms dependent on histone acetylation, ATP and both. Moreover, we show that accessibility of acetylated histone H4 to dBD is not restricted by chromatin condensation nor predicted by acetylation, rather, it is predicted by chromatin condensation fluctuations.


Subject(s)
Chromatin/chemistry , Acetylation , Adenosine Triphosphate/metabolism , Fluorescent Dyes , Green Fluorescent Proteins/analysis , HEK293 Cells , Histones/metabolism , Humans , TATA-Binding Protein Associated Factors/metabolism
19.
Nat Immunol ; 20(3): 350-361, 2019 03.
Article in English | MEDLINE | ID: mdl-30718914

ABSTRACT

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Subject(s)
Agammaglobulinemia/immunology , B-Lymphocytes/immunology , Cation Transport Proteins/immunology , Zinc/immunology , Agammaglobulinemia/genetics , Agammaglobulinemia/metabolism , Animals , B-Lymphocytes/metabolism , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Child, Preschool , Cytosol/immunology , Cytosol/metabolism , Disease Models, Animal , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , Humans , Infant , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pedigree , Zinc/metabolism
20.
J Med Chem ; 62(6): 2928-2937, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30785281

ABSTRACT

Potent Ebolavirus (EBOV) inhibitors will help to curtail outbreaks such as that which occurred in 2014-16 in West Africa. EBOV has on its surface a single glycoprotein (GP) critical for viral entry and membrane fusion. Recent high-resolution complexes of EBOV GP with a variety of approved drugs revealed that binding to a common cavity prevented fusion of the virus and endosomal membranes, inhibiting virus infection. We performed docking experiments, screening a database of natural compounds to identify those likely to bind at this site. Using both inhibition assays of HIV-1-derived pseudovirus cell entry and structural analyses of the complexes of the compounds with GP, we show here that two of these compounds attach in the common binding cavity, out of eight tested. In both cases, two molecules bind in the cavity. The two compounds are chemically similar, but the tighter binder has an additional chlorine atom that forms good halogen bonds to the protein and achieves an IC50 of 50 nM, making it the most potent GP-binding EBOV inhibitor yet identified, validating our screening approach for the discovery of novel antiviral compounds.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Medicine, Chinese Traditional , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Biological Products/chemistry , Biological Products/pharmacology , Computer Simulation , Crystallography, X-Ray , Drug Discovery , Glycoproteins/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...