Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods ; 67(2): 234-49, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24495737

ABSTRACT

In living organisms, the integration of signals from the environment and the molecular computing leading to a cellular response are orchestrated by Gene Regulatory Networks (GRN). However, the molecular complexity of in vivo genetic regulation makes it next to impossible to describe in a quantitative manner. Reproducing, in vitro, reaction networks that could mimic the architecture and behavior of in vivo networks, yet lend themselves to mathematical modeling, represents a useful strategy to understand, and even predict, the function of GRN. In this paper, we define a set of in vitro, DNA-based molecular transformations that can be linked to each other in such a way that the product of one transformation can activate or inhibit the production of one or several other DNA compounds. Therefore, these reactions can be wired in arbitrary networks. This approach provides an experimental way to reproduce the dynamic features of genetic regulation in a test tube. We introduce the rules to design the necessary DNA species, a guide to implement the chemical reactions and ways to optimize the experimental conditions. We finally show how this framework, or "DNA toolbox", can be used to generate an inversion module, though many other behaviors, including oscillators and bistable switches, can be implemented.


Subject(s)
Models, Genetic , Base Sequence , DNA/chemistry , DNA/genetics , Feedback, Physiological , Gene Expression Regulation , Gene Regulatory Networks , Nucleic Acid Amplification Techniques , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/genetics
2.
J Am Chem Soc ; 135(39): 14586-92, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-23731347

ABSTRACT

We report the experimental observation of traveling concentration waves and spirals in a chemical reaction network built from the bottom up. The mechanism of the network is an oscillator of the predator-prey type, and this is the first time that predator-prey waves have been observed in the laboratory. The molecular encoding of the nonequilibrium behavior relies on small DNA oligonucleotides that enforce the network connectivity and three purified enzymes that control the reactivity. Wave velocities in the range 80-400 µm min(-1) were measured. A reaction-diffusion model in quantitative agreement with the experiments is proposed. Three fundamental parameters are easy to tune in nucleic acid reaction networks: the topology of the network, the rate constants of the individual reactions, and the diffusion coefficients of the individual species. For this reason, we expect such networks to bring unprecedented opportunities for assaying the principles of spatiotemporal order formation in chemistry.


Subject(s)
DNA/metabolism , Enzymes/metabolism , Base Sequence , Computer Simulation , DNA/chemistry , Diffusion , Metabolic Networks and Pathways , Models, Biological
3.
Curr Opin Biotechnol ; 24(4): 575-80, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23265857

ABSTRACT

Nucleic acid-based circuits are rationally designed in vitro assemblies that can perform complex preencoded programs. They can be used to mimic in silico computations. Recent works emphasized the modularity and robustness of these circuits, which allow their scaling-up. Another new development has led to dynamic, time-responsive systems that can display emergent behaviors like oscillations. These are closely related to biological architectures and provide an in vitro model of in vivo information processing. Nucleic acid circuits have already been used to handle various processes for technological or biotechnological purposes. Future applications of these chemical smart systems will benefit from the rapidly growing ability to design, construct, and model nucleic acid circuits of increasing size.


Subject(s)
Biotechnology , Computers, Molecular , Nucleic Acids/chemistry , Computer Simulation , Enzymes/chemistry
4.
Proc Natl Acad Sci U S A ; 109(47): E3212-20, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23112180

ABSTRACT

Reaction networks displaying bistability provide a chemical mechanism for long-term memory storage in cells, as exemplified by many epigenetic switches. These biological systems are not only bistable but switchable, in the sense that they can be flipped from one state to the other by application of specific molecular stimuli. We have reproduced such functions through the rational assembly of dynamic reaction networks based on basic DNA biochemistry. Rather than rewiring genetic systems as synthetic biology does in vivo, our strategy consists of building simplified dynamic analogs in vitro, in an artificial, well-controlled milieu. We report successively a bistable system, a two-input switchable memory element, and a single-input push-push memory circuit. These results suggest that it is possible to build complex time-responsive molecular circuits by following a modular approach to the design of dynamic in vitro behaviors. Our approach thus provides an unmatched opportunity to study topology/function relationships within dynamic reaction networks.


Subject(s)
Gene Regulatory Networks , Models, Genetic , DNA/genetics , DNA/metabolism , Feedback, Physiological , Genes, Switch , Templates, Genetic
5.
Nucleic Acids Res ; 40(15): e118, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22753028

ABSTRACT

We present a simple yet efficient technique to monitor the dynamics of DNA-based reaction circuits. This technique relies on the labeling of DNA oligonucleotides with a single fluorescent modification. In this quencher-free setup, the signal is modulated by the interaction of the 3'-terminus fluorophore with the nucleobases themselves. Depending on the nature of the fluorophore's nearest base pair, fluorescence intensity is decreased or increased upon hybridization. By tuning the 3'-terminal nucleotides, it is possible to obtain opposite changes in fluorescence intensity for oligonucleotides whose hybridization site is shifted by a single base. Quenching by nucleobases provides a highly sequence-specific monitoring technique, which presents a high sensitivity even for small oligonucleotides. Compared with other sequence-specific detection methods, it is relatively non-invasive and compatible with the complex dynamics of DNA reaction circuits. As an application, we show the implementation of nucleobase quenching to monitor a DNA-based chemical oscillator, allowing us to follow in real time and quantitatively the dephased oscillations of the components of the network. This cost-effective monitoring technique should be widely implementable to other DNA-based reaction systems.


Subject(s)
DNA/chemistry , Nucleic Acid Hybridization/methods , Fluorescent Dyes , Oligonucleotides/chemistry
6.
Biomicrofluidics ; 6(4): 44101, 2012.
Article in English | MEDLINE | ID: mdl-24106525

ABSTRACT

Water-in-oil microdroplets offer microreactors for compartmentalized biochemical reactions with high throughput. Recently, the combination with a sol-gel switch ability, using agarose-in-oil microdroplets, has increased the range of possible applications, allowing for example the capture of amplicons in the gel phase for the preservation of monoclonality during a PCR reaction. Here, we report a new method for generating such agarose-in-oil microdroplets on a microfluidic device, with minimized inlet dead volume, on-chip cooling, and in situ monitoring of biochemical reactions within the gelified microbeads. We used a flow-focusing microchannel network and successfully generated agarose microdroplets at room temperature using the "push-pull" method. This method consists in pushing the oil continuous phase only, while suction is applied to the device outlet. The agarose phase present at the inlet is thus aspirated in the device, and segmented in microdroplets. The cooling system consists of two copper wires embedded in the microfluidic device. The transition from agarose microdroplets to microbeads provides additional stability and facilitated manipulation. We demonstrate the potential of this method by performing on-chip a temperature-triggered DNA isothermal amplification in agarose microbeads. Our device thus provides a new way to generate microbeads with high throughput and no dead volume for biochemical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...