Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oncol ; 18(3): 691-706, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361222

ABSTRACT

Polo-like kinase 1 (PLK1; also known as serine/threonine-protein kinase PLK1) serves as a central player in cell proliferation, exerting critical regulatory roles in mitotic processes and cell survival. We conducted an analysis of PLK1 protein expression in a large cohort of samples from papillary thyroid carcinoma (PTC) patients and examined its functional significance in PTC cell lines, both in vitro and in vivo. PLK1 overexpression was noted in 54.2% of all PTC and was significantly associated with aggressive clinicopathological parameters; it was also found to be an independent prognostic marker for shorter recurrence-free survival. Given the significant association between PLK1 and forkhead box protein M1 (FoxM1), and their concomitant overexpression in a large proportion of PTC samples, we explored their correlation and their combined inhibitions in PTC in vitro and in vivo. Inhibition of PLK1 expression indeed suppressed cell proliferation, leading to cell cycle arrest and apoptosis in PTC cell lines. Significantly, the downregulation of PLK1 reduced the self-renewal capability of spheroids formed from PTC cells. Immunoprecipitation analysis shows that PLK1 binds to FoxM1 and vice versa in vitro. Mechanistically, PLK1 knockdown suppresses FoxM1 expression, whereas inhibition of FoxM1 does not affect PLK1 expression, which suggests that PLK1 acts through the FoxM1 pathway. The combined treatment of a PLK1 inhibitor (volasertib) and a FoxM1 inhibitor (thiostrepton) demonstrated a synergistic effect in reducing PTC cell growth in vitro and delaying tumor growth in vivo. This study highlights the important role of PLK1 in PTC tumorigenesis and prognosis. It also highlights the synergistic therapeutic potential of dual-targeting PLK1 and FoxM1 in PTC, unveiling a potential innovative therapeutic strategy for managing aggressive forms of PTC.


Subject(s)
Forkhead Box Protein M1 , Thyroid Neoplasms , Humans , Apoptosis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/metabolism
2.
Mol Oncol ; 17(7): 1324-1342, 2023 07.
Article in English | MEDLINE | ID: mdl-36799665

ABSTRACT

Furin belongs to the pro-protein convertases (PCs) family and its aberrant expression has been documented in various types of cancers; however, its role in thyroid cancer remains unclear. We investigated the expression of furin in a large cohort of Middle Eastern papillary thyroid carcinoma (PTC) patient samples and explored its functional role and mechanism in PTC cell lines in vitro and in vivo. Furin overexpression was observed in 44.6% of all PTC cases and was significantly associated with aggressive clinicopathological parameters and poor outcomes. We show that the knockdown of FURIN suppresses tumor growth, proliferation, migration, invasion, spheroid growth, and progression of epithelial-to-mesenchymal transition (EMT) in B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutant cells, whereas its overexpression in BRAF wild-type PTC cell lines reversed the effect. FURIN knockdown in the BRAF mutant cell line led to reduced tumor growth and increased apoptosis. Mechanistically, FURIN knockdown led to MEK/ERK pathway suppression in BRAF mutant cells, although inhibition of MEK did not affect furin expression, which suggests that furin acts through the MEK/ERK pathway. Furthermore, our study revealed the synergistic antitumor effect of furin depletion and anti-MEK inhibitor treatment. Overall, these results indicate that furin is an important prognostic marker in Middle Eastern PTC and that it plays a crucial role in BRAF-associated MAP/ERK pathway activation and tumorigenesis. Furin inhibition could be a potential therapeutic target for aggressive PTC.


Subject(s)
Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Furin/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Carcinoma, Papillary/genetics , Thyroid Neoplasms/drug therapy , Mutation
3.
Front Oncol ; 13: 1286585, 2023.
Article in English | MEDLINE | ID: mdl-38234395

ABSTRACT

Background: Despite advancements in treatment approaches, patients diagnosed with aggressive breast cancer (BC) subtypes typically face an unfavorable prognosis. Globally, these cancers continue to pose a significant threat to women's health, leading to substantial morbidity and mortality. Consequently, there has been a significant struggle to identify viable molecular targets for therapeutic intervention in these patients. Polo-like Kinase-1 (PLK1) represents one of these molecular targets currently undergoing rigorous scrutiny for the treatment of such tumors. Yet, its role in the pathogenesis of BC in Middle Eastern ethnicity remains unexplored. Methods: We investigated the expression of PLK1 protein in a cohort of more than 1500 Middle Eastern ethnicity BC cases by immunohistochemistry. Association with clinicopathological parameters and prognosis were performed. In vitro studies were conducted using the PLK1 inhibitor volasertib and the PARP inhibitor olaparib, either alone or in combination, in PTC cell lines. Results: Overexpression of PLK1 was detected in 27.4% of all BC cases, and this was notably correlated with aggressive clinicopathological markers. PLK1 was enriched in the triple-negative breast cancer (TNBC) subtype and exhibited poor overall survival (p = 0.0347). Notably, there was a positive correlation between PLK1 and PARP overexpression, with co-expression of PLK1 and PARP observed in 15.7% of cases and was associated with significantly poorer overall survival (OS) compared to the overexpression of either protein alone (p = 0.0050). In vitro, we studied the effect of PLK1 and PARP inhibitors either single or combined treatments in two BRCA mutated, and one BRCA proficient TNBC cell lines. We showed that combined inhibition significantly reduced cell survival and persuaded apoptosis in TNBC cell lines. Moreover, our findings indicate that inhibition of PLK1 can reinstate sensitivity in PARP inhibitor (PARPi) resistant TNBC cell lines. Conclusion: Our results shed light on the role of PLK1 in the pathogenesis and prognosis of Middle Eastern BC and support the potential clinical development of combined inhibition of PLK1 and PARP, a strategy that could potentially broaden the use of PLK1 and PARP inhibitors beyond BC cases lacking BRCA.

4.
Biomed Pharmacother ; 121: 109572, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31704613

ABSTRACT

Colorectal Cancer (CRC) is highly heterogeneous for which prognosis is dependent mainly on clinical staging. There is a need to stratify subpopulations of CRC on molecular basis to better predict outcome and therapy response. Truncating mutations in adenomatous polyposis coli (APC) are well-described events in CRC carcinogenesis. Clinical and genotypic characterization of Middle Eastern CRC based on presence and type of APC was determined in 412 CRC tumors using modern next generation sequencing. APC truncating mutations were identified in 58.2% (240/412) of CRCs. Overall, mutation was significant predictor of superior overall survival. Further, the type of APC mutations (short or long) did not have impact on clinical outcome. However, in vitro analysis showed difference between CRC cell lines carrying short truncating APC vs CRC cells that carry long truncating APC mutation in response to 5-flourouracil (5-FU). Importantly, we were able to overcome the resistance to 5-FU seen in CRC cells carrying short APC by tankyrase inhibitor, XAV939, thereby inhibiting Wnt/ß-catenin signaling cascade. Overall, our results showed that APC mutation status plays an important role in predicting overall survival in Middle Eastern population. Furthermore, in vitro data showed that selective targeting of APC mutated CRC by tankyrase inhibitor can be an effective strategy to overcome 5-FU resistance in CRC cells.


Subject(s)
Adenomatous Polyposis Coli/genetics , Antimetabolites, Antineoplastic/pharmacology , Colorectal Neoplasms/drug therapy , Fluorouracil/pharmacology , Aged , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Female , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Male , Middle Aged , Mutation , Saudi Arabia , Survival , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism , Wnt Signaling Pathway/genetics
5.
Toxicol Sci ; 146(2): 290-300, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25979314

ABSTRACT

Chronic exposure to arsenic via drinking water is associated with an increased risk for development of type 2 diabetes mellitus (T2DM). This study investigates the role of mitochondrial oxidative stress protein Sirtuin 3 (Sirt3) and its targeting proteins in chronic arsenic-induced T2DM in mouse adipocytes and myotubes. The results show that chronic arsenic exposure significantly decreased insulin-stimulated glucose uptake (ISGU) in correlation with reduced expression of insulin-regulated glucose transporter type 4 (Glut4). Expression of Sirt3, a mitochondrial deacetylase, was dramatically decreased along with its associated transcription factor, forkhead box O3 (FOXO3a) upon arsenic exposure. A decrease in mitochondrial membrane potential (Δψm) was observed in both 3T3L1 adipocytes and C2C12 myotubes treated by arsenic. Reduced FOXO3a activity by arsenic exhibited a decreased binding affinity to the promoters of both manganese superoxide dismutase (MnSOD) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, a broad and powerful regulator of reactive oxygen species (ROS) metabolism. Forced expression of Sirt3 or MnSOD in mouse myotubes elevated Δψm and restored ISGU inhibited by arsenic exposure. Our results suggest that Sirt3/FOXO3a/MnSOD signaling plays a significant role in the inhibition of ISGU induced by chronic arsenic exposure.


Subject(s)
Adipocytes/drug effects , Arsenic/toxicity , Forkhead Transcription Factors/metabolism , Insulin Resistance , Mitochondria/metabolism , Muscle Fibers, Skeletal/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Sirtuin 3/metabolism , Adipocytes/metabolism , Animals , Forkhead Box Protein O3 , Mice , Muscle Fibers, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Superoxide Dismutase/metabolism , Superoxides/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...