Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38675385

ABSTRACT

Medicinal plants have been utilized since ancient times for their therapeutic properties, offering potential solutions for various ailments, including epidemics. Among these, Leptadenia reticulata, a member of the Asclepiadaceae family, has been traditionally employed to address numerous conditions such as diarrhea, cancer, and fever. In this study, employing HR-LCMS/MS(Q-TOF) analysis, we identified 113 compounds from the methanolic extract of L. reticulata. Utilizing Lipinski's rule of five, we evaluated the drug-likeness of these compounds using SwissADME and ProTox II. SwissTarget Prediction facilitated the identification of potential inflammatory targets, and these targets were discerned through the Genecard, TTD, and CTD databases. A network pharmacology analysis unveiled hub proteins including CCR2, ICAM1, KIT, MPO, NOS2, and STAT3. Molecular docking studies identified various constituents of L. reticulata, exhibiting high binding affinity scores. Further investigations involving in vivo testing and genomic analyses of metabolite-encoding genes will be pivotal in developing efficacious natural-source drugs. Additionally, the potential of molecular dynamics simulations warrants exploration, offering insights into the dynamic behavior of protein-compound interactions and guiding the design of novel therapeutics.

2.
Metabolites ; 13(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37367915

ABSTRACT

The field of drug discovery has recognized the significance of computer-aided drug design. Recent advancements in structure identification and characterization, bio-computational science and molecular biology have significantly contributed to the development of novel treatments for various diseases. Alzheimer's disease is prevalent in over 50 million affected people, with the pathological condition of amyloidal plaque formation by the beta-amyloidal peptide that results in lesions of the patient's brain, thus making the target prediction and treatment a hurdle. In this study, we evaluated the potential of 54 bioactive compounds from Justicia adhatoda L. and Sida cordifolia L. identified through LC-MS/MS against the ß-site amyloid precursor cleaving enzyme (beta-secretase) that results in the formation of amyloidal plaques. To study the drug-likeness of the phytocompounds, Lipinski's rule of five for ADME profiling and toxicity prediction was performed. Molecular docking was performed using auto-dock tool of PyRx software; molecular dynamic simulations were performed using the Schrodinger suite. Molecular docking against BACE-1 protein revealed that hecogenin, identified from S. cordifolia has a broad spectrum of pharmacological applications and a binding affinity score of -11.3 kcal/Mol. The Hecogenin-BACE-1 protein complex was found to be stable after 30 ns of MD simulation, resulting in its substantial stability. Further studies focusing on the in vivo neuroprotective activity of hecogenin against the disease will pave the way for efficient drug discovery from natural sources in a precise manner.

3.
Genes (Basel) ; 13(10)2022 10 20.
Article in English | MEDLINE | ID: mdl-36292794

ABSTRACT

Sida cordifolia is a medicinal shrub that is conventionally used in the Indian system of medicine;however, the genes contributing to its medicinal properties have been minimally explored, thus limiting its application. High-throughputsequencing and Liquid Chromatography with tandem mass spectrometry(LC-MS/MS) technologies were applied to unravel the medicinally important bioactive compounds. As a result, transcriptomic sequencing generated more than 12 GB of clean data, and 187,215 transcripts were obtained by de novoassembly. These transcripts were broadly classified into 20 classes, based on the gene ontology classification, and 6551 unigenes were annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG) database with more than 142 unigenes involved in the biosynthesis of secondary metabolites. LC-MS/MS analysis of three tissues of Sida cordifolia revealed that acacetin and procyanidin are some important metabolites identified thatcontribute to its medicinal value. Several key enzymes witha crucial role in phenylpropanoid and flavonoid biosynthetic pathways were identified, especially phenylalanine ammonia lyase, which might be an important rate-limiting enzyme. Real-Time Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR) analysis revealed enzymes, such as Phenylalanine ammonia lyase (PAL), Cinnamyl alcohol dehydrogenase 1 (CAD), Cinnamoyl-CoA reductase 1 (CF1) and Trans cinnamate 4-monooxygenase(TCM), which were predominantly expressed in root compared to leaf and stem tissue. The study provides a speculative insight for the screening of active metabolites and metabolic engineering in Sida cordifolia.


Subject(s)
Proanthocyanidins , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Transcriptome/genetics , Phenylalanine Ammonia-Lyase/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Gene Expression Profiling/methods , Flavonoids , Mixed Function Oxygenases/genetics , Cinnamates
4.
Mol Biol Rep ; 49(11): 10307-10314, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36097107

ABSTRACT

BACKGROUND: Justicia adhatoda is an important medicinal plant traditionally used in the Indian system of medicine and the absence of molecular-level studies in this plant hinders its wide use, hence the study was aimed to analyse the genes involved in its various pathways. METHODS AND RESULTS: The RNA isolated was subjected to Illumina sequencing. De novo assembly was performed using TRINITY software which produced 171,064 transcripts with 55,528 genes and N50 value of 2065 bp, followed by annotation of unigenes against NCBI, KEGG and Gene ontology databases resulted in 105,572 annotated unigenes and 40,288 non-annotated unigenes. A total of 5980 unigenes were mapped to 144 biochemical pathways, including the metabolism and biosynthesis pathways. The pathway analysis revealed the major transcripts involved in the tryptophan biosynthesis with TPM values of 6.0903, 33.6854, 11.527, 1.6959, and 8.1662 for Anthranilate synthase alpha, Anthranilate synthase beta, Arogenate/Prephenate dehydratase, Chorismate synthase and Chorismate mutase, respectively. The qRT-PCR validation of the key enzymes showed up-regulation in mid mature leaf when compared to root and young leaf tissue. A total of 16,154 SSRs were identified from the leaf transcriptome of J. Adhatoda ,which could be helpful in molecular breeding. CONCLUSIONS: The study aimed at identifying transcripts involved in the tryptophan biosynthesis pathway for its medicinal properties, as it acts as a precursor to the acridone alkaloid biosynthesis with major key enzymes and their validation. This is the first study that reports transcriptome assembly and annotation of J. adhatoda plant.


Subject(s)
Justicia , Justicia/genetics , Biosynthetic Pathways/genetics , Molecular Sequence Annotation , Gene Expression Regulation, Plant/genetics , Anthranilate Synthase/genetics , Tryptophan/genetics , Gene Expression Profiling , Transcriptome/genetics , High-Throughput Nucleotide Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...