Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 103(1): 370-379, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36373792

ABSTRACT

BACKGROUND: Cocos nucifera (L.) is an important plantation crop with immense but untapped nutraceutical potential. Despite its bioactive potential, the biochemical features of testa oils of various coconut genotypes are poorly understood. Hence, in this study, the physicochemical characteristics of testa oils extracted from six coconut genotypes - namely West Coast Tall (WCT), Federated Malay States Tall (FMST), Chowghat Orange Dwarf (COD), Malayan Yellow Dwarf (MYD), and two Dwarf × Dwarf (D × D hybrids) viz., Cameroon Red Dwarf (CRD) × Ganga Bondam Green Dwarf (GBGD) and MYD × Chowghat Green Dwarf (CGD) - were analyzed. RESULTS: The proportion of testa in the nuts (fruits) (1.29-3.42%), the proportion of oil in the testa (40.97-50.56%), and biochemical components in testa oils - namely proxidant elements Fe (34.17-62.48 ppm) and Cu (1.63-2.77 ppm), and the total phenolic content (6.84-8.67 mg GAE/100 g), and phytosterol content (54.66-137.73 mg CE/100 g) varied depending on the coconut genotypes. The saturated fatty acid content of testa oils (67.75 to 78.78%) was lower in comparison with that of coconut kernel oils. Similarly, the lauric acid (26.66-32.04%), myristic (18.31-19.60%), and palmitic acid (13.43-15.71%,) content of testa oils varied significantly in comparison with the coconut kernel oils (32-51%, 17-21% and 6.9-14%, respectively). Liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of 18 phenolic acids in coconut testa oil. Multivariate analysis revealed the biochemical attributes that defined the principal components loadings. Hierarchical clustering analysis of the genotypes showed two distinct clusters. CONCLUSION: This study reveals the genotypic variations in the nutritionally important biochemical components of coconut testa oils. The relatively high concentration of polyunsaturated fatty acids (PUFA) and polyphenol content in testa oils warrant further investigation to explore their nutraceutical potential. © 2022 Society of Chemical Industry.


Subject(s)
Cocos , Fatty Acids , Cocos/genetics , Cocos/chemistry , Fatty Acids/analysis , Coconut Oil/chemistry , Fatty Acids, Unsaturated , Genotype , Plant Oils/chemistry
2.
Food Chem ; 238: 153-159, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28867086

ABSTRACT

Study was conducted to determine the biochemical constituents in coconut (Cocos nucifera L.) haustorium, a spongy tissue formed during coconut germination. Results indicated that 100g of dried coconut haustorium contained 1.05±0.2% ash, 44.2±4.6% soluble sugar, 24.5±3.2% starch, 5.50±0.3% protein, 1.99±0.9% fat, 5.72±0.4% soluble dietary fibre, 20.3±1.9% insoluble dietary fibre, and 146±14.3mg phenolics. Mineral profiling showed that it contained 145±8.6, 104±9.6, 33.9±8.2, 30.9±1.9, 9.45±2.1, 0.292±0.1, 2.53±0.2 and 1.20±0.1mg of K, Mg, Ca, P, Mn, Cu, Fe and Zn, respectively. Antioxidant activity assay indicated that 100g haustorium was equivalent to 1918±173, 170±20.4, 72.8±14.7 and 860±116mg of Trolox as measured by CUPRAC, FRAP, DPPH and ABTS, respectively. Amino acid score indicated that methionine+cysteine (57.6%), phenylalanine+tyrosine (32.6%), leucine (45.7%) and isoleucine (68%) are found less in haustorium. Further studies needed in developing nutritionally balanced formulations using coconut haustorium, which will be useful for lactose intolerant children.


Subject(s)
Cocos , Dietary Fiber , Germination , Humans , Phenols , Starch
3.
J Food Sci Technol ; 47(6): 686-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-23572707

ABSTRACT

Seven to 8 months old (maturity stage) coconuts (Cocos nucifera L.) from local tall cultivar ('West Coast Tall') with husk and intact perianth were stored at room temperature (27 ± 2(°)C) and the minimally processed nuts (60% husk removed) were stored both at room temperature as well as refrigerated conditions (13 ± 2°C) to evaluate the changes in physical and chemical constituents of coconut water during storage. Observations on physiological loss in weight of the stored coconuts, volume and pH of coconut water, total sugars and amino acid, minerals (Na and K) and sensory tests were used to evaluate the quality. The observations were continued till the quality of the nut water deteriorated. It was observed that, to increase the shelf-life of the coconuts the nuts have to be harvested carefully with intact perianth and without any breakage of nuts. The quality of minimally processed nuts deteriorates earlier than non-dehusked nuts during storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...