Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Phys Chem Au ; 4(1): 67-84, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38283783

ABSTRACT

Corrosion inhibition of mild steel (MS) was studied using Lachancea fermentati isolate in 0.5 M H2SO4, which was isolated from rotten grapes (Vitis vinifera) via biofilm formation. Biofilm over the MS surface was asserted by employing FT-IR and FE-SEM with EDXS, electrochemical impedance spectroscopy (EIS), AFM, and DFT-ESP techniques. The weight loss experiments and temperature studies supported the physical adsorption behavior of the corrosion inhibitors. The maximum inhibition efficiency (IE) value (90%) was observed at 293 K for 9 × 106 cfu/mL of Lachancea fermentati isolate. The adsorption of Lachancea fermentati isolate on the surface of MS confirms Langmuir's adsorption isotherm model, and the -ΔG values indicate the spontaneous adsorption of inhibitor over the MS surface. Electrochemical studies, such as potentiodynamic polarization (PDP) and EIS were carried out to investigate the charge transfer (CT) reaction of the Lachancea fermentati isolate. Tafel polarization curves reveal that the Lachancea fermentati isolate acts as a mixed type of inhibitor. The Nyquist plots (EIS) indicate the increase in charge transfer resistance (Rct) and decrease of double-layer capacitance (Cdl) values when increasing the concentration of Lachancea fermentati isolate. The spectral studies, such as UV-vis and FT-IR, confirm the formation of a complex between MS and the Lachancea fermentati isolate inhibitor. The formation of biofilm on the MS surface was confirmed by FE-SEM, EDXS, and XPS analysis. The proposed bioinhibitor shows great potential for the corrosion inhibition of mild steel in acid media.

2.
Microb Pathog ; 113: 295-302, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29101061

ABSTRACT

Antimicrobial resistance is a challenging task for researchers to develop new strategies. Green synthesis of AuNPs is an eco-friendly approach, which can be utilized in the microbistatic and microbicidal activities. The current study is focused on Justicia glauca (aqueous leaf extract) mediated AuNPs synthesis at room temperature by treating chloroaurate ions, that shows an antagonistic effect with Azithromycin (AZM) and Clarithromycin (CLR) antibiotics against oral pathogenic bacteria and fungi (Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus, Streptococcus mutans, Lactobacillus acidophilus, Escherichia coli, Pseudomonas aeruginosa, Saccharomyces cerevisiae and Candida albicans). Characterization of green synthesized AuNPs was done by using Ultraviolet-visible (UV-vis) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) analysis and Energy Dispersive X-ray analysis (EDAX). Biosynthesized AuNPs were stable, hexagonal and spherical shaped with a size ∼32.5 ± 0.25 nm. The AuNPs and drug conjugated AuNPs showed potential antibacterial and antifungal activity against the oral pathogens. Minimum Inhibitory Concentration (MIC) values of biogenic AuNPs were observed in the range of 6.25-25 µg/mL against selected oral pathogens. Overall, we conclude that biogenic drug delivery system for AZM and CLR can be exploited as potential antimicrobial therapy in future, subject to detailed in-vitro and in-vivo cytotoxicity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gold Colloid/chemistry , Justicia/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Azithromycin/pharmacology , Bacteria/drug effects , Clarithromycin/pharmacology , Drug Antagonism , Fungi/drug effects , Green Chemistry Technology , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Mouth/microbiology , Particle Size , Plant Extracts/chemistry , Plant Leaves/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...