Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 201: 116200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430679

ABSTRACT

The small-spotted catshark (Scyliorhinus canicula) is a bottom-dwelling elasmobranch that represents the most discarded catch in terms of biomass in the Catalan coast (NW Mediterranean). Potential impacts affecting its population and food safety implications have been assessed in three localities along the Catalan coast. Distinct indicators were integrated, such as biological data, ingested anthropogenic items (plastic and cellulose-like items), parasitological indices, trace metal concentrations and histopathology using liver as target organ. Although high ingestion rates of fibres and levels of some heavy metals, they do not seem negatively affected by any major pathology nor by the current levels of pollutants. Small-scale differences among localities and depths were found and discussed. No zoonotic parasites were found. Encysted larvae of Grillotia adenoplusia and, above all, the levels of Hg found in the musculature, that are well over the European Commission limits, rise concerns regarding human consumption of S. canicula in this region.


Subject(s)
Mercury , Sharks , Animals , Humans , Mediterranean Sea , Liver , Adaptation, Psychological
2.
Mar Environ Res ; 186: 105921, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36827887

ABSTRACT

Prevalence, abundance, concentration, size and composition of anthropogenic items (AIs) (synthetic and non-synthetic) ingested by Merluccius merluccius juvenile specimens and from near-bottom water samples from different localities off the Catalan coast (NW Mediterranean), were characterized. The potential effect of AIs on fish condition was assessed through different health indicators. Virtually all AIs found in fish and near-bottom water samples were fibres. A mean of 0.85 fibres/m3 from the surrounding water was observed. Fish ingested a mean of 1.39 (SD = 1.39) items/individual. Cellulosic fibres were predominant (77.8% of samples), except for Barcelona. No differences in ingested AIs abundance and composition off Barcelona between 2007 and 2019 were found. Small AIs from the environment matched ingested AIs composition. Hakes did not ingest large fibres despite being present in the environment, probably due to their feeding behaviour. No adverse health effects or parasites aggregations were detected to be potentially related to AIs ingestion.


Subject(s)
Gadiformes , Perciformes , Water Pollutants, Chemical , Animals , Mediterranean Sea , Plastics , Environmental Monitoring , Fishes , Environmental Exposure , Water Pollutants, Chemical/analysis
3.
Environ Pollut ; 314: 120230, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36155227

ABSTRACT

Anthropogenic pollution is considered one of the main threats to the marine environment, and there is an imperious need to assess its potential impact on ecologically and economically relevant species. This study characterises plastic ingestion and tissue levels of potentially toxic metallic elements in Nephrops norvegicus and their simultaneous levels in abiotic compartments from three locations of the Catalan coast (NW Mediterranean Sea). A multidisciplinary assessment of the health condition of N. norvegicus through condition indices, enzymatic biomarkers and histological techniques is provided, and its relationship with anthropogenic pollutant levels explored. Plastic fibres were commonly found in stomachs of N. norvegicus (85% of the individuals), with higher abundances (13 ± 21 fibres · ind-1) in specimens captured close to Barcelona. The presence of long synthetic fibres in near-bottom waters, as well as the mirroring trends in abundance among locations for water and ingested plastics, suggest that uptake from water may be occurring potentially through suspension feeding. The spatial variability in the levels of metallic elements in N. norvegicus was poorly correlated to the variability in sediments. In any case, present levels in abdominal muscle are considered safe for human consumption. Levels of ingested plastics only showed significant, yet weak, correlations with glutathione S-transferase and catalase activities. However, no other health parameter analysed showed any trend potentially associated to anthropogenic pollutant levels. Neither the condition indices nor the histopathological assessment evidenced any signs of pathologic conditions affecting N. norvegicus. Thus, it was concluded that presently there is no evidence of a negative impact of the studied pollutants on the health condition of N. norvegicus in the studied grounds.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Biomarkers , Catalase , Environmental Monitoring/methods , Environmental Pollutants/analysis , Glutathione Transferase , Mediterranean Sea , Nephropidae , Plastics , Water/analysis , Water Pollutants, Chemical/analysis
4.
PLoS One ; 17(8): e0273802, 2022.
Article in English | MEDLINE | ID: mdl-36018889

ABSTRACT

Nervous Necrosis Virus (NNV) represents one of the most threatening pathogens for Mediterranean aquaculture. Several NNV strains are currently co-circulating in the Mediterranean Basin with a high prevalence of the RGNNV genotype and the RGNNV/SJNNV reassortant strain and a more limited diffusion of the SJNNV genotype and the SJNNV/RGNNV reassortant. In the present study, a one-step multiplex RT-PCR (mRT-PCR) assay was developed as an easy, cost-effective and rapid diagnostic technique to detect RGNNV and the reassortant RGNNV/SJNNV strain and to distinguish them from SJNNV and the reassortant SJNNV/RGNNV strain in a single RT-PCR reaction. A unique amplification profile was obtained for each genotype/reassortant enabling their rapid identification from cell culture lysates or directly from brain tissues of suspected fish. The method's detection limit varied between 102.3 and 103.4 TCID50 ml-1 depending on viral strains. No cross-reacitivty with viruses and bacteria frequently associated with gilthead seabream, European seabass and marine environment was observed. The mRT-PCR was shown to be an accurate, rapid and affordable method to support traditional diagnostic techniques in the diagnosis of VNN, being able to reduce considerably the time to identify the viral genotype or the involvement of reassortant strains.


Subject(s)
Bass , Fish Diseases , Nodaviridae , RNA Virus Infections , Animals , Necrosis , Reverse Transcriptase Polymerase Chain Reaction
5.
Sci Total Environ ; 841: 156539, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35688235

ABSTRACT

The European anchovy (Engraulis encrasicolus) is a small pelagic fish with an outstanding commercial value supporting important fisheries and is a key component of pelagic ecosystems in the Mediterranean Sea. Progressive reductions in the population size of this species has been observed in the Mediterranean Sea during recent decades, accompanied by a decline in the body condition, as well as the size/age of maturation. Nonetheless, the health status has not been yet assessed using a holistic approach. Herein, we analyse the health status of the European anchovy, integrating distinct indicators from fish condition, enzymatic biomarkers, presence of tissue alterations, and parasite descriptors. In addition, we analyse the presence of anthropogenic items (AIs) in the digestive tract of fish and their potential impact on health status. Additionally, we assess the differences between current AIs values and those recorded over 12 years ago. None of the health indicators studied provided evidence of relevant pathologic conditions affecting this fish species in the studied area. However, changes in the pattern of liver parenchyma were found. Compared with anchovy populations from other distribution areas, no zoonotic parasites were recorded in this study, demonstrating a reduced risks associated with foodborne transmission to humans. AIs, such as fibres and plastic particles, were found in the digestive tract of half of the fish analysed. A significant increase was detected in AIs prevalence between 2007 (40 %) and 2019 (70 %), alongside differences in the abundance and typology of the AIs, though this does not seem to have impacted fish health yet. Therefore, our work underscores the importance of implementing a regular program to monitor the health status of this key species to better understand population dynamics and their drivers.


Subject(s)
Ecosystem , Parasites , Animals , Fishes/parasitology , Food Safety , Health Status , Mediterranean Sea
6.
Pathogens ; 11(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335654

ABSTRACT

Viral nervous necrosis (VNN) is the most important viral disease affecting farmed fish in the Mediterranean. VNN can affect multiple fish species in all production phases (broodstock, hatchery, nursery and ongrowing) and sizes, but it is especially severe in larvae and juvenile stages, where can it cause up to 100% mortalities. European sea bass has been and is still the most affected species, and VNN in gilthead sea bream has become an emerging problem in recent years affecting larvae and juveniles and associated to the presence of new nervous necrosis virus (NNV) reassortants. The relevance of this disease as one of the main biological hazards for Mediterranean finfish farming has been particularly addressed in two recent H2020 projects: PerformFISH and MedAID. The presence of the virus in the environment and in the farming systems poses a serious menace for the development of the Mediterranean finfish aquaculture. Several risks associated to the VNN development in farms have been identified in the different phases of the farming system. The main risks concerning VNN affecting gilthead seabream and European seabass have been identified as restocking from wild fish in broodstock facilities, the origin of eggs and juveniles, quality water supply and live food in hatcheries and nurseries, and infected juveniles and location of farms in endemic areas for on-growing sites. Due to the potential severe impact, a holistic integrated management approach is the best strategy to control VNN in marine fish farms. This approach should include continuous surveillance and early and accurate diagnosis, essential for an early intervention when an outbreak occurs, the implementation of biosecurity and disinfection procedures in the production sites and systematic vaccination with effective vaccines. Outbreak management practices, clinical aspects, diagnostic techniques, and disinfections methods are reviewed in detail in this paper. Additionally, new strategies are becoming more relevant, such as the use of genetic resistant lines and boosting the fish immune system though nutrition.

7.
Animals (Basel) ; 11(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064270

ABSTRACT

Histozoic parasite-fish host interaction is a dynamic process that leads to the formation of a granuloma, a specific chronic inflammatory response with discernible histological features. Mullets (Osteichthyes: Mugilidae) represent a suitable model concerning the development of such lesions in the host-parasite interface. The present work aimed to identify granuloma developmental stages from the early to the late phase of the infection and to characterize the immune cells and non-inflammatory components of the granuloma in different stages. For this purpose, 239 mullets were collected from 4 Sardinian lagoons, and several organs were examined by combining histopathological, bacteriological, and immunohistochemical methods. Granulomas associated with trematode metacercariae and myxozoan parasites were classified into three developmental stages: (1) pre-granuloma stage, characterized by intact encysted parasite and with no or mild tissue reaction; (2) intermediate stage, with partially degenerated parasites, necrosis, and a moderate number of epithelioid cells (ECs); and (3) late stage, with a necrotic core and no detectable parasite with a high number of ECs and fibroblasts. The three-tier staging and the proposed morphological diagnosis make it conceivable that histopathology could be an essential tool to evaluate the granulomas associated with histozoic parasitic infection in fish.

8.
Animals (Basel) ; 11(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916144

ABSTRACT

Parasitic and amphizoic amoebae are ubiquitous and can affect a huge variety of hosts, from invertebrates to humans, and fish are not an exception. Most of the relationships between amoebae and fish are based on four different types: ectocommensals, ectoparasites, endocommensals and endoparasites, although the lines between them are not always clear. As ectocommensals, they are located specially on the gills and particularly the amphizoic Neoparamoeba perurans is the most relevant species, being a real pathogenic parasite in farmed salmon. It causes amoebic gill disease, which causes a progressive hyperplasia of epithelial cells in the gill filaments and lamellae. Nodular gill disease is its analogue in freshwater fish but the causative agent is still not clear, although several amoebae have been identified associated to the lesions. Other species have been described in different fish species, affecting not only gills but also other organs, even internal ones. In some cases, species of the genera Naegleria or Acanthamoeba, which also contain pathogenic species affecting humans, are usually described affecting freshwater fish species. As endocommensals, Entamoebae species have been described in the digestive tract of freshwater and marine fish species, but Endolimax nana can reach other organs and cause systemic infections in farmed Solea senegalensis. Other systemic infections caused by amoebae are usually described in wild fish, although in most cases these are isolated cases without clinical signs or significance.

9.
J Vet Diagn Invest ; 32(1): 142-146, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31735129

ABSTRACT

Desmozoon lepeophtherii is a microsporidian associated with gill disease in farmed Atlantic salmon (Salmo salar). Detection of the parasite in histologic tissue sections is challenging using common histochemical stains given that the small, widely distributed parasite spores typically occur individually or in small clusters. We compared the ability of 4 histologic methods to detect D. lepeophtherii spores in serial sections of Atlantic salmon gill tissue: hematoxylin and eosin (H&E), Gram-Twort (GT), calcofluor white (CW), and immunohistochemistry (IHC). Using CW as a benchmark to calculate a relative ratio, IHC consistently detected more spores than CW (median: 1.3), followed by GT (median: 0.2) and H&E (median: 0.1). IHC detected significantly more spores than GT (p < 0.05) and H&E (p < 0.05), and GT more than H&E (p < 0.05). We found significant underestimation of numbers of microsporidia spores in gill disease in Atlantic salmon using conventional histochemical stains and recommend the use of CW or IHC to detect the parasite in tissue sections.


Subject(s)
Fish Diseases/microbiology , Gills/microbiology , Histological Techniques/veterinary , Microsporidia/isolation & purification , Microsporidiosis/veterinary , Salmo salar/microbiology , Animals , Fish Diseases/diagnosis , Fish Diseases/pathology , Histological Techniques/methods , Histological Techniques/standards , Microsporidiosis/diagnosis , Microsporidiosis/microbiology , Spores, Fungal/isolation & purification
10.
PLoS One ; 14(1): e0211389, 2019.
Article in English | MEDLINE | ID: mdl-30689670

ABSTRACT

Agricultural intensification and shifts in precipitation regimes due to global climate change are expected to increase nutrient concentrations in aquatic ecosystems. However, the direct effects of nutrients widely present in wastewaters, such as nitrate, are poorly studied. Here, we use multiple indicators of fish health to experimentally test the effects of three ecologically relevant nitrate concentrations (<10, 50 and 250 mg NO3-/l) on wild-collected mosquitofish (Gambusia holbrooki), a species widely introduced for mosquito biocontrol in often eutrophic waters. Overall, biomarkers (histopathology, feeding assays, growth and caloric content and stable isotopes as indicators of energy content) did not detect overt signs of serious disease in juveniles, males or females of mosquitofish. However, males reduced food intake at the highest nitrate concentration compared to the controls and females. Similarly, juveniles reduced energy reserves without significant changes in growth or food intake. Calorimetry was positively associated with the number of perivisceral fat cells in juveniles, and the growth rate of females was negatively associated with δ15N signature in muscle. This study shows that females are more tolerant to nitrate than males and juveniles and illustrates the advantages of combing short- and long-term biomarkers in environmental risk assessment, including when testing for the adequacy of legal thresholds for pollutants.


Subject(s)
Biomarkers/analysis , Cyprinodontiformes/growth & development , Ecosystem , Environmental Exposure/adverse effects , Nitrates/analysis , Nitrates/toxicity , Water Pollutants, Chemical/toxicity , Animals , Feeding Behavior , Female , Male , Sex Factors
11.
Mar Pollut Bull ; 133: 44-52, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30041334

ABSTRACT

Microplastic (MP) ingestion has been reported in a wide variety of organisms, however, its spatial occurrence and effects on wild populations remain quite unknown. The present study targets an economically and ecologically key species in the Mediterranean Sea, the shrimp Aristeus antennatus. 39.2% of the individuals sampled had MP in their stomachs, albeit in areas close to Barcelona city the percentage reached values of 100%. Overall, MP ingestion was confirmed in a wide spatial and depth (630-1870 m) range, pointing out the great dispersion of this pollutant. The benthophagous diet and close relationship with the sea bottom of A. antennatus might enhance MP exposure and ultimately lead to accidental ingestion. Detailed analysis of shrimps' diet revealed that individuals with MP had a higher presence of endobenthic prey. Microplastic fibers are probably retained for long periods due to stomach's morphology, but no negative effects on shrimp's biological condition were observed.


Subject(s)
Decapoda/drug effects , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Decapoda/metabolism , Food Chain , Mediterranean Sea , Plastics/analysis , Stomach/chemistry , Water Pollutants, Chemical/analysis
12.
J Fish Dis ; 41(9): 1385-1393, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29926922

ABSTRACT

The dusky grouper Epinephelus marginatus (Lowe) is an ecologically and commercially important fish species of the Atlantic and Mediterranean coastal rocky habitats. Despite records of didymozoid infections in several grouper species, the identification and pathogenesis of these parasites in E. marginatus are lacking. The aim of this study is to characterize the didymozoids of E. marginatus, particularly their mechanisms of infection and histopathological features. Dusky groupers (n = 205) were caught off Majorca Island (western Mediterranean Sea) and examined for parasites. Of the fish sampled, 45% were infected with white and yellow didymozoid capsules and brown nodules, found on the gills and pseudobranchs. Parasite abundance had a strong positive relationship with the fish length; only fish larger than 20 cm were infected, suggesting infection via consumption of an intermediate host, for which E. marginatus size was a limiting factor. The capsules contained two convoluted viable adult trematodes, identified as Didymodiclinus sp., in close contact with host capillary vessels, with no evidence of the tissue inflammatory response. Conversely, nodules containing degraded parasites were surrounded by an intense inflammatory infiltrate. The findings suggest that Didymodiclinus sp. have the potential to evade the host's immune system by inhibiting the inflammatory response.


Subject(s)
Bass/parasitology , Ecological and Environmental Phenomena , Fish Diseases/pathology , Fish Diseases/parasitology , Trematoda/pathogenicity , Animals , Bass/immunology , Fish Diseases/epidemiology , Fish Diseases/immunology , Gills/parasitology , Gills/pathology , Gills/ultrastructure , Immune Evasion , Inflammation , Mediterranean Sea/epidemiology , Seafood/parasitology , Trematoda/immunology , Trematoda/physiology
13.
J Fish Dis ; 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29882280

ABSTRACT

Zebrafish has become a popular research model in the last years, and several diseases affecting zebrafish research facilities have been reported. However, only one case of naturally occurring viral infections was described for this species. In 2015, infectious spleen and kidney necrosis virus (ISKNV) was detected in zebrafish from a research facility in Spain. Affected fish showed lethargy, loss of appetite, abnormal swimming, distention of the coelomic cavity and, in the most severe cases, respiratory distress, pale gills and petechial haemorrhages at the base of fins. Cytomegaly was the most relevant histopathological finding in organs and tissues, sometimes associated to degenerative and necrotic changes. ISKNV belongs to the relatively newly defined genus Megalocytivirus, family Iridoviridae, comprising large, icosahedral cytoplasmic DNA viruses. This is the first case of naturally occurring Megalocytivirus infection in zebrafish research facilities, associated with morbidity. The virus has been identified based on both pathologic and genetic evidence, to better understand the pathogenesis of the infection in zebrafish and the phylogenetic relationship with other iridoviruses. Given the ability of megalocytiviruses to cross-species boundaries, it seems necessary to implement stringent biosecurity practices as these infections may invalidate experimental data and have major impact on laboratory and cultured fish.

14.
Sci Rep ; 8(1): 4844, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29555973

ABSTRACT

Inhibition and aging of neuropathy target esterase (NTE) by exposure to neuropathic organophosphorus compounds (OPs) can result in OP-induced delayed neuropathy (OPIDN). In the present study we aimed to build a model of OPIDN in adult zebrafish. First, inhibition and aging of zebrafish NTE activity were characterized in the brain by using the prototypic neuropathic compounds cresyl saligenin phosphate (CBDP) and diisopropylphosphorofluoridate (DFP). Our results show that, as in other animal models, zebrafish NTE is inhibited and aged by both neuropathic OPs. Then, a neuropathic concentration inhibiting NTE activity by at least 70% for at least 24 h was selected for each compound to analyze changes in phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs) and glycerolphosphocholine (GPC) profiles. In spite to the strong inhibition of the NTE activity found for both compounds, only a mild increase in the LPCs level was found after 48 h of the exposure to DFP, and no effect were observed by CBDP. Moreover, histopathological evaluation and motor function outcome analyses failed to find any neurological abnormalities in the exposed fish. Thus, our results strongly suggest that zebrafish is not a suitable species for the development of an experimental model of human OPIDN.


Subject(s)
Neurotoxins/toxicity , Organophosphorus Compounds/toxicity , Peripheral Nervous System Diseases/chemically induced , Zebrafish , Animals , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Carboxylic Ester Hydrolases/antagonists & inhibitors , Dose-Response Relationship, Drug , Lipid Metabolism/drug effects , Locomotion/drug effects , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/physiopathology
15.
J Biophotonics ; 11(3)2018 03.
Article in English | MEDLINE | ID: mdl-28766927

ABSTRACT

Changes on an organism by the exposure to environmental stressors may be characterized by hyperspectral images (HSI), which preserve the morphology of biological samples, and suitable chemometric tools. The approach proposed allows assessing and interpreting the effect of contaminant exposure on heterogeneous biological samples monitored by HSI at specific tissue levels. In this work, the model example used consists of the study of the effect of the exposure of chlorpyrifos-oxon on zebrafish tissues. To assess this effect, unmixing of the biological sample images followed by tissue-specific classification models based on the unmixed spectral signatures is proposed. Unmixing and classification are performed by multivariate curve resolution-alternating least squares (MCR-ALS) and partial least squares-discriminant analysis (PLS-DA), respectively. Crucial aspects of the approach are: (1) the simultaneous MCR-ALS analysis of all images from 1 population to take into account biological variability and provide reliable tissue spectral signatures, and (2) the use of resolved spectral signatures from control and exposed populations obtained from resampling of pixel subsets analyzed by MCR-ALS multiset analysis as information for the tissue-specific PLS-DA classification models. Classification results diagnose the presence of a significant effect and identify the spectral regions at a tissue level responsible for the biological change.


Subject(s)
Environment , Eye/diagnostic imaging , Image Processing, Computer-Assisted , Informatics , Molecular Imaging , Stress, Physiological , Zebrafish , Animals , Chlorpyrifos/analogs & derivatives , Chlorpyrifos/toxicity , Discriminant Analysis , Eye/drug effects , Least-Squares Analysis , Multivariate Analysis , Stress, Physiological/drug effects
16.
Sci Rep ; 7(1): 13952, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29066856

ABSTRACT

Acrylamide (ACR), a type-2 alkene, may lead to a synaptopathy characterized by ataxia, skeletal muscles weakness and numbness of the extremities in exposed human and laboratory animals. Currently, only the mildly affected patients undergo complete recovery, and identification of new molecules with therapeutic bioactivity against ACR acute neurotoxicity is urgently needed. Here, we have generated a zebrafish model for ACR neurotoxicity by exposing 5 days post-fertilization zebrafish larvae to 1 mM ACR for 3 days. Our results show that zebrafish mimics most of the pathophysiological processes described in humans and mammalian models. Motor function was altered, and specific effects were found on the presynaptic nerve terminals at the neuromuscular junction level, but not on the axonal tracts or myelin sheath integrity. Transcriptional markers of proteins involved in synaptic vesicle cycle were selectively altered, and the proteomic analysis showed that ACR-adducts were formed on cysteine residues of some synaptic proteins. Finally, analysis of neurotransmitters profile showed a significant effect on cholinergic and dopaminergic systems. These data support the suitability of the developed zebrafish model for screening of molecules with therapeutic value against this toxic neuropathy.


Subject(s)
Acrylamide/toxicity , Larva/drug effects , Models, Biological , Neurotoxins/toxicity , Zebrafish , Animals , Larva/genetics , Transcription, Genetic/drug effects
17.
Sci Rep ; 7: 46755, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28462930

ABSTRACT

Viral nervous necrosis (VNN) certainly represents the biggest challenge for the sustainability and the development of aquaculture. A large number of economically relevant fish species have proven to be susceptible to the disease. Conversely, gilthead sea bream has generally been considered resistant to VNN, although it has been possible to isolate the virus from apparently healthy sea bream and sporadically from affected larvae and postlarvae. Unexpectedly, in 2014-2016 an increasing number of hatcheries in Europe have experienced mass mortalities in sea bream larvae. Two clinical outbreaks were monitored over this time span and findings are reported in this paper. Despite showing no specific clinical signs, the affected fish displayed high mortality and histological lesions typical of VNN. Fish tested positive for betanodavirus by different laboratory techniques. The isolates were all genetically characterized as being reassortant strains RGNNV/SJNNV. A genetic characterization of all sea bream betanodaviruses which had been isolated in the past had revealed that the majority of the strains infecting sea bream are actually RGNNV/SJNNV. Taken together, this information strongly suggests that RGNNV/SJNNV betanodavirus possesses a particular tropism to sea bream, which can pose a new and unexpected threat to the Mediterranean aquaculture.


Subject(s)
Fish Diseases/virology , Nodaviridae/physiology , RNA Virus Infections/virology , Reassortant Viruses/physiology , Sea Bream/virology , Animals , Aquaculture , Female , Genotype , Host-Pathogen Interactions , Larva/virology , Male , Mediterranean Region , Nodaviridae/classification , Nodaviridae/genetics , Phylogeny , RNA, Viral/genetics , Reassortant Viruses/classification , Reassortant Viruses/genetics
18.
Arch Toxicol ; 91(4): 1891-1901, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27655295

ABSTRACT

Acute organophosphorus (OP) intoxication is a worldwide clinical and public health problem. In addition to cholinergic crisis, neurodegeneration and brain damage are hallmarks of the severe form of this toxidrome. Recently, we generated a chemical model of severe acute OP intoxication in zebrafish that is characterized by altered head morphology and brain degeneration. The pathophysiological pathways resulting in brain toxicity in this model are similar to those described in humans. The aim of this study was to assess the predictive power of this zebrafish model by testing the effect of a panel of drugs that provide protection in mammalian models. The selected drugs included "standard therapy" drugs (atropine and pralidoxime), reversible acetylcholinesterase inhibitors (huperzine A, galantamine, physostigmine and pyridostigmine), N-methyl-D-aspartate (NMDA) receptor antagonists (MK-801 and memantine), dual-function NMDA receptor and acetylcholine receptor antagonists (caramiphen and benactyzine) and anti-inflammatory drugs (dexamethasone and ibuprofen). The effects of these drugs on zebrafish survival and the prevalence of abnormal head morphology in the larvae exposed to 4 µM chlorpyrifos oxon [1 × median lethal concentration (LC50)] were determined. Moreover, the neuroprotective effects of pralidoxime, memantine, caramiphen and dexamethasone at the gross morphological level were confirmed by histopathological and transcriptional analyses. Our results demonstrated that the zebrafish model for severe acute OP intoxication has a high predictive value and can be used to identify new compounds that provide neuroprotection against severe acute OP intoxication.


Subject(s)
Brain/drug effects , Chlorpyrifos/analogs & derivatives , Neuroprotective Agents/pharmacology , Organophosphate Poisoning/drug therapy , Animals , Antidotes/pharmacology , Brain/physiopathology , Chlorpyrifos/administration & dosage , Chlorpyrifos/toxicity , Disease Models, Animal , Lethal Dose 50 , Organophosphate Poisoning/physiopathology , Zebrafish
20.
Sci Total Environ ; 540: 307-23, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26148426

ABSTRACT

Mediterranean rivers are probably one of the most singular and endangered ecosystems worldwide due to the presence of many endemic species and a long history of anthropogenic impacts. Besides a conservation value per se, biodiversity is related to the services that ecosystems provide to society and the ability of these to cope with stressors, including climate change. Using macro-invertebrates and fish as sentinel organisms, this overview presents a synthesis of the state of the art in the application of biomarkers (stress and enzymatic responses, endocrine disruptors, trophic tracers, energy and bile metabolites, genotoxic indicators, histopathological and behavioural alterations, and genetic and cutting edge omic markers) to determine the causes and effects of anthropogenic stressors on the biodiversity of European Mediterranean rivers. We also discuss how a careful selection of sentinel species according to their ecological traits and the food-web structure of Mediterranean rivers could increase the ecological relevance of biomarker responses. Further, we provide suggestions to better harmonise ecological realism with experimental design in biomarker studies, including statistical analyses, which may also deliver a more comprehensible message to managers and policy makers. By keeping on the safe side the health status of populations of multiple-species in a community, we advocate to increase the resilience of fluvial ecosystems to face present and forecasted stressors. In conclusion, this review provides evidence that multi-biomarker approaches detect early signs of impairment in populations, and supports their incorporation in the standardised procedures of the Water Frame Work Directive to better appraise the status of European water bodies.


Subject(s)
Environmental Monitoring/methods , Fishes/metabolism , Invertebrates/metabolism , Animals , Biodiversity , Biomarkers/metabolism , Climate Change , Ecology , Ecosystem , Endocrine Disruptors , Food Chain , Mediterranean Region , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...