Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Anim (NY) ; 48(8): 221, 2019 08.
Article in English | MEDLINE | ID: mdl-31332357
2.
Physiol Behav ; 82(1): 97-107, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15234597

ABSTRACT

Serotonergic 5-HT2C and 5-HT1B receptors mediate inhibitory controls of eating. Questions have arisen about potential behavioral and neurological toxicity of drugs that stimulate the 2C site. We evaluated eating and other motor responses in male Dutch-belted rabbits after administration of m-chlorophenylpiperazine (mCPP). Studies conducted in vitro and in vivo assessed the pharmacological specificity of the ingestive actions of this agent. mCPP (0.15-10 micromol/kg sc) reduced consumption of chow and 20% sucrose solution with equal potencies (ED50 approximately equal 0.6 micromol/kg). In radioligand binding to rabbit cortex, mCPP displayed 15-fold higher affinity for 5-HT2C than for 5-HT1B receptors. The serotonin antagonist mesulergine (7000-fold selective for 5-HT2C) reversed the hypophagic action of mCPP, but the 5-HT1B/1D antagonist GR127,935 did not. GR127,935 (0.5 micromol/kg) did prevent hypophagia produced by the highly selective 5-HT1B/1D agonist GR46,611. Observational methods demonstrated that mCPP decreased the frequency of eating chow but increased other motor activities. When rabbits consumed sucrose, videoanalysis revealed that mCPP reduced total time licking and the duration of individual bouts, but not bout frequency or the actual rate of consumption. mCPP increased locomotor and other activities, and greatly increased vacuous oromotor stereotypies and tongue protrusions. Nonetheless, rabbits licked accurately at the spout for sucrose. When sucrose was infused intraorally through a cheek catheter, mCPP actually increased the peak amplitude and overall magnitude of jaw movements. We conclude that mCPP stimulates 5-HT2C receptors to reduce food intake in rabbits. This hypophagia involves disruption of appetitive components of eating and is accompanied by adverse motor actions. This profile raises questions about the use of the 5-HT2C receptor as a target for novel therapeutic agents for obesity.


Subject(s)
Dyskinesia, Drug-Induced/etiology , Eating/drug effects , Hyperkinesis/chemically induced , Piperazines/adverse effects , Serotonin 5-HT2 Receptor Agonists , Acrylamides/pharmacology , Animals , Area Under Curve , Dose-Response Relationship, Drug , Drug Interactions , Indoles/pharmacology , Jaw/drug effects , Male , Rabbits , Radioligand Assay/methods , Serotonin Antagonists/pharmacokinetics , Sucrose , Tritium/pharmacokinetics
3.
Brain Res ; 1004(1-2): 98-107, 2004 Apr 09.
Article in English | MEDLINE | ID: mdl-15033424

ABSTRACT

To characterize the direct effects of thyroid hormones on native gamma-aminobutyric acid(A) (GABA(A)) receptors, rapid (5 s) actions of a series of iodothyronines on muscimol-stimulated uptake of (36)Cl(-) were investigated in synaptoneurosomes prepared from rat brain. The results were correlated with molecular modeling of the active compounds. Dose-response curves for muscimol in the presence of 3,3', 5-L-triiodothyronine (L-T3) indicated a noncompetitive inhibition of muscimol-stimulated (36)Cl(-) uptake by the thyroid hormone. Synaptoneurosomes prepared from cerebellum were less sensitive to L-T3 than those from cerebral cortex, in terms of the potency of the hormone. The overall efficacy approached complete inhibition for both brain regions. Muscimol-stimulated (36)Cl(-) uptake was inhibited differentially by iodothyronine derivatives. One group of compounds with IC(50) values of 18-30 microM included L-thyroxine (L-T4), D-thyroxine (D-T4), 3,3', 5,5'-tetraiodothyroacetic acid (Tetrac), and 3,3', 5-triiodothyroacetic acid (Triac). A second group with values of 75-100 microM included 3,3', 5'-l-triiodothyronine (reverse T3; r-T3), 3,3'-diiodo-L-thyronine (3,3'-l-T2) and 3,5-diiodo-L-thyronine (3,5-D-T2). A final group of inactive compounds with IC(50) values greater than 100 microM included 3',5'-diiodo-L-thyronine (3',5'-l-T2), 3-iodo-L-thyronine (L-T1), 3'-iodo-L-thyronine (3'-L-T1), and L-thyronine (L-T0). Molecular modeling of the active iodothyronines using the Gaussian03 series of programs indicated close correspondences with models of the GABA-inhibitory neurosteroid pregnenolone sulfate (PREGS), suggesting common mechanisms of action at the GABA(A) receptor.


Subject(s)
Models, Molecular , Receptors, GABA-A/metabolism , Thyroid Hormones/metabolism , Animals , Cerebellum/drug effects , Cerebellum/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Dose-Response Relationship, Drug , GABA-A Receptor Antagonists , Male , Muscimol/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...