Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928478

ABSTRACT

Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to improving cancer risk characterization and effective screening protocols. The only founder mutation described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1Δ9-12), and its description focuses on the gene sequence, but no transcription profiles have been generated for individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients and healthy individuals who were heterozygous for PV BRCA1Δ9-12 by analyzing the differential expression of both alleles compared with the homozygous BRCA1 control group using RT-qPCR, and we describe the isoforms produced by the BRCA1 wild-type and BRCA1Δ9-12 alleles using nanopore long-sequencing. Using the Kruskal-Wallis test, our results showed a similar transcript expression of the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control group. An association between the recurrence and increased expression of both alleles in HBOC patients was also observed. An analysis of the sequences indicated four wild-type isoforms with diagnostic potential for discerning individuals who carry the PV BRCA1Δ9-12 and identifying which of them has developed cancer.


Subject(s)
Alleles , BRCA1 Protein , Hereditary Breast and Ovarian Cancer Syndrome , Humans , BRCA1 Protein/genetics , Female , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Middle Aged , Genetic Predisposition to Disease , Adult , Founder Effect , Exons/genetics , Breast Neoplasms/genetics , Heterozygote , Mutation , Mexico , Ovarian Neoplasms/genetics , Clinical Relevance
2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232851

ABSTRACT

Lynch syndrome (LS) is the main hereditary colorectal cancer syndrome. There have been few reports regarding the clinical and molecular characteristics of LS patients in Latin America; this is particularly true in the Mexican population, where no information is available. The present study aims to describe the clinical and molecular spectrum of variants in a cohort of patients diagnosed with LS in Mexico. We present a retrospective analysis of 412 patients with suspected LS, whose main site of cancer diagnosis was the colon (58.25%), followed by the endometrium (18.93%). Next-generation sequencing analysis, with an extensive multigene panel, showed that 27.1% (112/414) had a variant in one of the genes of the mismatch repair pathway (MMR); 30.4% (126/414) had a variant in non-MMR genes such as CHEK2, APC, MUTYH, BRCA1, and BRCA2; and 42.5% (176/414) had no genetic variants. Most of the variants were found in MLH1. Pathogenic variants (PVs) in MMR genes were identified in 65.7% (96/146) of the total PVs, and 34.24% (45/146) were in non-MMR genes. Molecular and clinical characterization of patients with LS in specific populations allowed personalized follow-up, with the option for targeted treatment with immune checkpoint inhibitors and the development of public health policies. Moreover, such characterization allows for family cascade testing and consequent prevention strategies.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , Female , Germ-Line Mutation , Humans , Immune Checkpoint Inhibitors , Mexico/epidemiology , MutS Homolog 2 Protein/genetics , Retrospective Studies
3.
Gynecol Oncol ; 143(2): 406-413, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27581326

ABSTRACT

OBJECTIVE: The objective of the present study was to provide genomic and transcriptomic information that may improve clinical outcomes for locally advanced cervical cancer (LACC) patients by searching for therapeutic targets or potential biomarkers through the analysis of significantly altered signaling pathways in LACC. METHODS: Microarray-based transcriptome profiling of 89 tumor samples from women with LACC was performed. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, significantly over-expressed genes in LACC were identified; these genes were validated by quantitative reverse transcription-polymerase chain reaction in an independent cohort, and the protein expression data were obtained from the Human Protein Atlas. RESULTS: A transcriptome analysis revealed 7530 significantly over-expressed genes in LACC samples. By KEGG analysis, we found 93 dysregulated signaling pathways, including the JAK-STAT, NOTCH and mTOR-autophagy pathways, which were significantly upregulated. We confirmed the overexpression of the relevant genes of each pathway, such as NOTCH1, JAK2, STAM1, SOS1, ADAM17, PSEN1, NCSTN, RPS6, STK11/LKB1 and MLTS8/GBL in LACC compared with normal cervical tissue epithelia. CONCLUSIONS: Through comprehensive genomic and transcriptomic analyses, this work provides information regarding signaling pathways with promising therapeutic targets, suggesting novel target therapies to be considered in future clinical trials for LACC patients.


Subject(s)
Signal Transduction/physiology , Transcriptome , Uterine Cervical Neoplasms/therapy , AMP-Activated Protein Kinase Kinases , Adult , Aged , Cluster Analysis , Female , Humans , Immunohistochemistry , Middle Aged , Protein Serine-Threonine Kinases/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL