Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38132261

ABSTRACT

This review aims to analyze different strategies that make use of artificial intelligence to enhance diagnosis, treatment planning, and monitoring in orthodontics. Orthodontics has seen significant technological advancements with the introduction of digital equipment, including cone beam computed tomography, intraoral scanners, and software coupled to these devices. The use of deep learning in software has sped up image processing processes. Deep learning is an artificial intelligence technology that trains computers to analyze data like the human brain does. Deep learning models are capable of recognizing complex patterns in photos, text, audio, and other data to generate accurate information and predictions. MATERIALS AND METHODS: Pubmed, Scopus, and Web of Science were used to discover publications from 1 January 2013 to 18 October 2023 that matched our topic. A comparison of various artificial intelligence applications in orthodontics was generated. RESULTS: A final number of 33 studies were included in the review for qualitative analysis. CONCLUSIONS: These studies demonstrate the effectiveness of AI in enhancing orthodontic diagnosis, treatment planning, and assessment. A lot of articles emphasize the integration of artificial intelligence into orthodontics and its potential to revolutionize treatment monitoring, evaluation, and patient outcomes.

2.
Microorganisms ; 11(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37374979

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a group of neurodevelopmental illnesses characterized by difficulty in social communication, social interaction, and repetitive behaviors. These clinical diagnostic criteria can be seen in children as early as one year old and are commonly associated with long-term difficulties. ASD is connected with a higher frequency of various medical diseases such as gastrointestinal complaints, seizures, anxiety, interrupted sleep, and immunological dysfunction, in addition to the range of developmental abnormalities listed. METHODS: From 1 January 2013 to 28 February 2023, we searched PubMed, Scopus and Web of Science for English-language papers that matched our topic. The following Boolean keywords were utilized in the search approach: "autism" AND "microbiota". After deleting duplicates, a total of 2370 publications were found from the databases, yielding 1222 articles. (1148). Nine hundred and eighty-eight items were excluded after their titles and abstracts were scrutinized. The method resulted in the removal of 174 items for being off-topic. The final 18 articles for qualitative analysis are included in the evaluation. CONCLUSION: The findings of this extensive study revealed that probiotics, prebiotics, their combination as synbiotics, fecal microbiota transplantation, and microbiota transfer therapy may benefit ASD patients suffering from both gastrointestinal and central nervous system symptoms.

3.
Stem Cells Int ; 2021: 6664697, 2021.
Article in English | MEDLINE | ID: mdl-33679990

ABSTRACT

BACKGROUND: The articular cartilage is unique in that it contains only a single type of cell and shows poor ability for spontaneous healing. Cartilage tissue engineering which uses mesenchymal stem cells (MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) is considered an attractive treatment for cartilage lesions and osteoarthritis. The establishment of cartilage regenerative medicine is an important clinical issue, but the search for cell sources able to restore cartilage integrity proves to be challenging. The aim of this study was to create cartilage grafts from the combination of AT-MSCs and collagen substrates. METHODS: Mesenchymal stem cells were obtained from human donors' adipose tissue, and collagen scaffold, obtained from human skin and cleaned from blood vessels, adipose tissues, and debris, which only preserve dermis and epidermis, were seeded and cultured on collagen substrates and differentiated to chondrocytes. The obtained chondrocyte extracellular matrix of cartilage was then evaluated for the expression of chondrocyte-/cartilage-specific markers, the Cartilage Oligomeric Matrix Protein (COMP), collagen X, alpha-1 polypeptide (COL10A1), and the Collagen II, Human Tagged ORF Clone (COL2A1) by using the reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Our findings have shown that the dermal collagen may exert important effects on the quality of in vitro expanded chondrocytes, leading in this way that the influence of collagen skin matrix helps to produce highly active and functional chondrocytes for long-term cartilage tissue regeneration. CONCLUSION: This research opens up the possibility of generating cartilage grafts with the precise purpose of improving the existing limitation in current clinical procedures.

SELECTION OF CITATIONS
SEARCH DETAIL
...