Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Crit Rev Food Sci Nutr ; : 1-50, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011754

ABSTRACT

India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.

2.
Int J Biol Macromol ; 258(Pt 1): 128739, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096943

ABSTRACT

Biomolecules obtained from microorganisms living in extreme environments possess properties that have pharmacokinetic advantages. Enzyme assay revealed recombinant L-ASNase, an extremozyme from Pseudomonas sp. PCH199 is to be highly stable with 90 % activity (200 h) at 37 °C. The stability of the enzyme in human serum (50 % activity maintained in 63 h) reveals high therapeutic potential with less dosage. The enzyme exhibited cytotoxicity to K562 blood cancer cell lines with IC50 of 0.37 U/mL without affecting the IEC-6 normal epithelial cell line. Due to the depletion of L-asparagine, K562 cells experience nutritional stress that results in the abruption of metabolic processes and eventually leads to apoptosis. Comparative studies on MCF-7 cells also revealed the same fate. Due to nutritional stress induced by L-ASNase treatment, mitochondrial membrane potential was lost, and reactive oxygen species were increased to 48 % (K562) and 21 % (MCF-7) as indicated by flow cytometric analysis. DAPI staining with prominent nuclear morphological changes visualized under the fluorescent microscope confirmed apoptosis in both cancer cells. Treatment increases pro-apoptotic Bax protein, and eventually, the cell cycle is arrested at the G2/M phase in both cell lines. Therefore, the current study paves the way for PCH199 L-ASNase to be considered a potential chemotherapeutic agent for treating acute lymphoblastic leukemia.


Subject(s)
Antineoplastic Agents , Asparaginase , Humans , Asparaginase/metabolism , Pseudomonas/metabolism , Apoptosis , Cell Cycle Checkpoints , MCF-7 Cells , Antineoplastic Agents/pharmacology
3.
Front Microbiol ; 14: 1210517, 2023.
Article in English | MEDLINE | ID: mdl-37744933

ABSTRACT

The importance of gut-liver axis in the pathophysiology of metabolic dysfunction-associated fatty liver disease (MAFLD) is being investigated more closely in recent times. However, the inevitable changes in gut microbiota during progression of the disease merits closer look. The present work intends to assess the time-dependent gut dysbiosis in MAFLD, its implications in disease progression and role of plant-derived prebiotics in its attenuation. Male C57BL/6J mice were given western diet (WD) for up to 16 weeks and phloretin was administered orally. The fecal samples of mice were collected every fourth week for 16 weeks. The animals were sacrificed at the end of the study and biochemical and histological analyses were performed. Further, 16S rRNA amplicon sequencing analysis was performed to investigate longitudinal modification of gut microbiome at different time points. Findings of our study corroborate that phloretin alleviated the metabolic changes and mitigated circulating inflammatory cytokines levels. Phloretin treatment resists WD induced changes in microbial diversity of mice and decreased endotoxin content. Prolonged exposure of WD changed dynamics of gut microbiota abundance and distribution. Increased abundance of pathogenic taxa like Desulfovibrionaceae, Peptostreptococcus, Clostridium, and Terrisporobacter was noted. Phloretin treatment not only reversed this dysbiosis but also modulated taxonomic signatures of beneficial microbes like Ruminococcus, Lactobacillus, and Alloprevotella. Therefore, the potential of phloretin to restore gut eubiosis could be utilized as an intervention strategy for the prevention of MAFLD and related metabolic disorders.

4.
Biomater Adv ; 154: 213627, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748276

ABSTRACT

The escalating incidences of non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders are global health concerns. Phloretin (Ph) is a natural phenolic compound, that exhibits a wide array of pharmacological actions including its efficacy towards NAFLD. However, poor solubility and bioavailability of phloretin limits its clinical translation. Here, to address this concern we developed an amorphous solid dispersion of phloretin (Ph-SD) using Soluplus® as a polymer matrix. We further performed solid-state characterization through SEM, P-XRD, FT-IR, and TGA/DSC analysis. Phloretin content, encapsulation efficiency, and dissolution profile of the developed formulation were evaluated through reverse phase HPLC. Finally, the oral bioavailability of Ph-SD and its potential application in the treatment of experimental NAFLD mice was investigated. Results demonstrated that the developed formulation (Ph-PD) augments the dissolution profile and oral bioavailability of the native phloretin (Ph). In NAFLD mice, histopathological studies revealed the preventive effect of Ph-SD on degenerative changes, lipid accumulation, and inflammation in the liver. Ph-SD also improved the serum lipid profile, ALT, and AST levels and lowered the interleukin-6 and tumor necrosis factor-α levels in the liver. Further, Ph-SD reduced fibrotic changes in the liver tissues and attenuates NAFLD progression by blocking the mTOR/SREBP-1c pathway. In a nutshell, the results of our study strongly suggest that Ph-SD has the potential to be a therapeutic candidate in the treatment of NAFLD and can be carried forward for further clinical studies.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Sterol Regulatory Element Binding Protein 1/metabolism , Biological Availability , Phloretin/pharmacology , Phloretin/therapeutic use , Spectroscopy, Fourier Transform Infrared , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/therapeutic use , Lipids/therapeutic use
5.
Cell Immunol ; 391-392: 104754, 2023.
Article in English | MEDLINE | ID: mdl-37506521

ABSTRACT

Ulcerative colitis is a type of inflammatory bowel disease which in long run can lead to colorectal cancer (CRC). Chronic inflammation can be a key factor for the occurrence of CRC thus mitigating an inflammation can be a preventive strategy for the occurrence of CRC. In this study we have explored the anti-inflammatory potential of phloretin, in in vitro gut inflammation model, developed by co-culture of Caco2 (intestinal epithelial) cells and RAW264.7 macrophages (immune cells). Phloretin is a dihydrochalcone present in apple, pear and strawberries. An anti-inflammatory effect of phloretin in reducing LPS induced inflammation and maintenance of transepithelial electric resistance (TEER) in Caco2 cells was examined. Paracellular permeability assay was performed using Lucifer yellow dye to evaluate the effect of phloretin in inhibiting gut leakiness caused by inflammatory mediators secreted by activated macrophages. Phloretin attenuated LPS induced nitric oxide levels, oxidative stress, depolarization of mitochondrial membrane potential in Caco2 cells as evidenced by reduction in reactive oxygen species (ROS), and enhancement of MMP, and decrease in inflammatory cytokines IL8, TNFα, IL1ß and IL6. It exhibited anti-inflammatory activity by inhibiting the expression of NFκB, iNOS and Cox2. Phloretin maintained the epithelial integrity by regulating the expression of tight junction proteins ZO1, occludin, Claudin1 and JAM. Phloretin reduced LPS induced levels of Cox2 along with the reduction in Src expression which further regulated an expression of tight junction protein occludin. Phloretin in combination to sodium pyruvate exhibited potential anti-inflammatory activity via targeting NFkB signaling. Our findings paved a way to position phloretin as nutraceutical in preventing the occurrence of colitis and culmination of disease into colitis associated colorectal cancer.


Subject(s)
Phloretin , Tight Junctions , Humans , Occludin/metabolism , Occludin/pharmacology , Caco-2 Cells , Phloretin/pharmacology , Phloretin/metabolism , Lipopolysaccharides/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , NF-kappa B/metabolism , Intestinal Mucosa/metabolism
6.
Life Sci ; 322: 121668, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37023949

ABSTRACT

AIMS: The rising prevalence of type 2 diabetes mellitus (T2DM) and accompanying insulin resistance is alarming globally. Natural and synthetic agonists of PPARγ are potentially attractive candidates for diabetics and are known to efficiently reverse adipose and hepatic insulin resistance, but related side effects and escalating costs are the causes of concern. Therefore, targeting PPARγ with natural ligands is advantageous and promising approach for the better management of T2DM. The present research aimed to assess the antidiabetic potential of phenolics Phloretin (PTN) and Phlorizin (PZN) in type 2 diabetic mice. MAIN METHODS: In silico docking was performed to check the effect of PTN and PZN on PPARγ S273-Cdk5 interactions. The docking results were further validated in preclinical settings by utilizing a mice model of high fat diet-induced T2DM. KEY FINDINGS: Computational docking and further MD-simulation data revealed that PTN and PZN inhibited the activation of Cdk5, thereby blocking the phosphorylation of PPARγ. Our in vivo results further demonstrated that PTN and PZN administration significantly improved the secretory functions of adipocytes by increasing adiponectin and reducing inflammatory cytokine levels, which ultimately reduced the hyperglycaemic index. Additionally, combined treatment of PTN and PZN decreased in vivo adipocyte expansion and increased Glut4 expression in adipose tissues. Furthermore, PTN and PZN treatment reduced hepatic insulin resistance by modulating lipid metabolism and inflammatory markers. SIGNIFICANCE: In summary, our findings strongly imply that PTN and PZN are candidates as nutraceuticals in the management of comorbidities related to diabetes and its complications.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Animals , Insulin Resistance/physiology , PPAR gamma/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Phlorhizin/pharmacology , Phlorhizin/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Phloretin/pharmacology , Phloretin/therapeutic use , Obesity
7.
Apoptosis ; 28(5-6): 810-829, 2023 06.
Article in English | MEDLINE | ID: mdl-36884140

ABSTRACT

Colorectal carcinoma (CRC) is the third most prevalent cancer, causing a significant mortality worldwide. Present available therapies are surgery, chemotherapy including radiotherapy, and these are known to be associated with heavy side effects. Therefore, nutritional intervention in the form of natural polyphenols has been well recognised to prevent CRC. Phloretin, a known dihydrochalcone is present in apple, pear and strawberry. This has been proven to induce apoptosis in cancer cells and also exhibited anti-inflammatory activity, thus can be explored as a potential anticancer nutraceutical agent. This study demonstrated phloretin's significant in vitro anticancer activity against CRC. Phloretin suppressed cell proliferation, colony forming ability and cellular migration in human colorectal cancer HCT-116 and SW-480 cells. Results also revealed that phloretin generated reactive oxygen species (ROS) which provoked depolarization of mitochondrial membrane potential (MMP) and further contributed to cytotoxicity in colon cancer cells. Phloretin also modulated the cell cycle regulators including cyclins and cyclin-dependent kinases (CDKs) and halted cell cycle at G2/M phase. Moreover, it also induced apoptosis by regulating the expression of Bax and BCl-2. The Wnt/ß-catenin signaling is inactivated by phloretin by targeting the downstream oncogenes namely CyclinD1, c-Myc and Survivin which are involved in the proliferation and apoptosis of colon cancer cells. In our study we showed that lithium chloride (LiCl) induced the expression of ß-catenin and its target genes and the co-treatment of phloretin circumvent its effect and downregulated the Wnt/ß-catenin signaling. In conclusion, our results strongly suggested that phloretin can be utilized as a nutraceutical anticancer agent for combating CRC.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Colorectal Neoplasms , Humans , Apoptosis , beta Catenin/genetics , beta Catenin/metabolism , Phloretin/pharmacology , Phloretin/therapeutic use , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Wnt Signaling Pathway , Colorectal Neoplasms/pathology , Colonic Neoplasms/drug therapy
8.
AMB Express ; 13(1): 22, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36828987

ABSTRACT

L-asparaginase (L-ASNase) from microbial sources is a commercially vital enzyme to treat acute lymphoblastic leukemia. However, the side effects associated with the commercial formulations of L-ASNases intrigued to explore for efficient and desired pharmacological enzymatic features. Here, we report the biochemical and cytotoxic evaluation of periplasmic L-ASNase of Pseudomonas sp. PCH199 isolated from the soil of Betula utilis, the Himalayan birch. L-ASNase production from wild-type PCH199 was enhanced by 2.2-fold using the Response Surface Methodology (RSM). Increased production of periplasmic L-ASNase was obtained using an optimized osmotic shock method followed by its purification. The purified L-ASNase was a monomer of 37.0 kDa with optimum activity at pH 8.5 and 60 ℃. It also showed thermostability retaining 100.0% (200 min) and 90.0% (70 min) of the activity at 37 and 50 ℃, respectively. The Km and Vmax values of the purified enzyme were 0.164 ± 0.009 mM and 54.78 ± 0.4 U/mg, respectively. L-ASNase was cytotoxic to the K562 blood cancer cell line (IC50 value 0.309 U/mL) within 24 h resulting in apoptotic nuclear morphological changes as examined by DAPI staining. Therefore, the dynamic functionality in a wide range of pH and temperature and stability of PCH199 L-ASNase at 37 ℃ with cytotoxic potential proves to be pharmaceutically important for therapeutic application.

9.
Comput Struct Biotechnol J ; 21: 1292-1311, 2023.
Article in English | MEDLINE | ID: mdl-36817960

ABSTRACT

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.

10.
Life Sci ; 316: 121437, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36702203

ABSTRACT

Obesity is an epidemic and a growing public health concern worldwide. It is one of the significant risk factors for developing chronic kidney disease. In the present study, we evaluated the preventive effect of green tea catechins (GTC) against obesity-induced kidney damage and revealed the underlying molecular mechanism of action. Various green tea catechins were quantified in the catechins-rich fraction using HPLC. In vitro, the palmitic and oleic acid-treated NRK-52E cells showed reduced fat accumulation and modulated expressions of PPARγ, CD36, and TGFß after GTC treatment. In vivo, rats were fed with a high-fat diet (HFD), and the effect of GTC was assessed at 150 and 300 mg/kg body weight doses. HFD-fed rats showed a significant reduction in weight gain and improved serum creatinine, urea, and urine microalbumin levels after GTC treatment. The improved adipokines and insulin levels in GTC treated groups indicated the insulin-sensitizing effect. Histopathology revealed reduced degenerative changes, fibrous tissue deposition, and mesangial matrix proliferation in GTC treated groups. GTC treatment also downregulated the gene expressions of lipogenic and inflammatory factors and improved the altered expressions of CD36 and PPARγ in the kidney tissue. Further, GTC prevented gut dysbiosis in rats by promoting healthy microbes like Akkermansia muciniphila and Lactobacillus reuteri. Faecal metabolome revealed reduced saturated fatty acids, and improved amino acid levels in the GTC treated groups, which help to maintain gut health and metabolism. Overall, GTC prevented obesity-induced kidney damage by modulating PPARγ/CD36 signaling and maintaining gut health in rats.


Subject(s)
Catechin , Insulins , Rats , Animals , PPAR gamma , Catechin/pharmacology , Catechin/therapeutic use , Obesity/complications , Obesity/prevention & control , Obesity/drug therapy , Tea/chemistry , Diet, High-Fat/adverse effects , Kidney/metabolism , Insulins/therapeutic use
11.
Probiotics Antimicrob Proteins ; 15(3): 761-773, 2023 06.
Article in English | MEDLINE | ID: mdl-35040023

ABSTRACT

Recently, probiotics have gained much attention for their roles against various clinical conditions. Obesity is a worldwide health problem that triggers various other major complications like type 2 diabetes (T2D) and cancers, including colorectal cancer (CRC). Earlier, Kluyveromyces marxianus PCH397 isolated from yak (Bos grunniens) milk has been characterised by us for its efficient ß-galactosidase-producing ability, an important probiotic property. In the present study, yeast PCH397 has been evaluated for various parameters for its probiotic use. PCH397 exhibited tolerance to GI tract conditions (low pH, pancreatin, pepsin, and bile salts) with 78 to 99% survivability, possessed around 81% cell surface hydrophobicity, and 96% autoaggregation ability. The cell-free extract (CFE) and cell-free supernatant (CFS) from PCH397 improved insulin sensitisation by enhancing 2-NBDG (a glucose analogue) uptake in 3T3-L1 adipocytes, an approach useful in T2D treatment. They also exhibited lower intracellular lipid accumulation, triglyceride storage, and reactive oxygen species in differentiated adipocytes, indicating their anti-adipogenic ability. Also, CFE and intact cells (ICs) exhibited 73.33 ± 1.11% and 34.88 ± 2.80% DPPH radical scavenging activity, respectively. Furthermore, CFS showed a cytotoxic effect on SW-480 colorectal cancer (CRC) cells and induced the cell cycle phase arrest after 24 h of treatment. In conclusion, these results demonstrate that K. marxianus PCH397 could be used as a potential probiotic yeast and presents a therapeutic potential against obesity, T2D, and colon cancer.


Subject(s)
Colorectal Neoplasms , Diabetes Mellitus, Type 2 , Probiotics , Animals , Cattle , Humans , Diabetes Mellitus, Type 2/drug therapy , Yeasts , Obesity , Probiotics/pharmacology , Colorectal Neoplasms/drug therapy
12.
ACS Omega ; 7(49): 45036-45044, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530328

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer in the world and the most prevalent cancer of developing countries. Increased disease burden and a smaller number of approved targeted therapies are a growing concern worldwide. Isoindolinone motifs have been a central part of many pharmacological compounds, and their derivatives possess substantial anticancer potential. However, their anticancer potential against HNSCC has not been well investigated. In the current study, a series of 3-methyleneisoindolinones have been designed and synthesized and their late-stage intramolecular Heck cyclization was achieved to evaluate their anticancer potential against HNSCC cells. Additionally, in silico ADME profiling of synthesized compounds revealed their drug-likeness properties as potential drug candidates. Among the synthesized compounds, 3-bromo-5-methylpyridin-2-yl-3-methyleneisoindolin-1-one, i.e., 3n, with a pyridyl unit exhibited the most significant cytotoxicity against HNSCC cells. The cytotoxic potential of synthesized compounds varied depending on the nature of substituents present and has been well established with structure-activity relationship studies. Further, flow cytometric analysis showed that 3f, 3h, and 3n triggered intracellular oxidative stress, disrupted mitochondrial membrane potential, and interrupted the cell cycle of HNSCC cells in the S-phase and sub-G1 phase. Further, 3f, 3h, and 3n also exhibited pro-apoptotic potential and induced cellular apoptosis in the HNSCC cells. Overall, the findings of this study attributed 3-methyleneisoindolinone chemistry and efficacy evaluation and corroborated their anticancer potential against HNSCC. It will pave the way to further design and optimize novel 3-methyleneisoindolinone as effective antitumor agents, which may provide effective treatment modalities against HNSCC.

13.
Pharmacol Rep ; 74(6): 1238-1254, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36125739

ABSTRACT

The SARS-CoV-2 outbreak has posed a plethora of problems for the global healthcare system and socioeconomic burden. Despite valiant efforts to contain the COVID-19 outbreak, the situation has deteriorated to the point that there are no viable preventive therapies to treat this disease. The case count has skyrocketed globally due to the newly evolved variants. Despite vaccination drives, the re-occurrence of recent pandemic waves has reinforced the importance of innovation/utilization of immune-booster to achieve appropriate long-term vaccine protection. Plant-derived immuno-adjuvants, which have multifaceted functions, can impede infections by boosting the immune system. Many previous studies have shown that formulation of vaccines using plant-derived adjuvant results in long-lasting immunity may overcome the natural tendency of coronavirus immunity to wane quickly. Plant polysaccharides, glycosides, and glycoprotein extracts have reportedly been utilized as enticing adjuvants in experimental vaccines, such as Advax, Matrix-M, and Mistletoe lectin, which have been shown to be highly immunogenic and safe. When employed in vaccine formulation, Advax and Matrix-M generate long-lasting antibodies, a balanced robust Th1/Th2 cytokine profile, and the stimulation of cytotoxic T cells. Thus, the use of adjuvants derived from plants may increase the effectiveness of vaccines, resulting in the proper immunological response required to combat COVID-19. A few have been widely used in epidemic outbreaks, including SARS and H1N1 influenza, and their use could also improve the efficacy of COVID-19 vaccines. In this review, the immunological adjuvant properties of plant compounds as well as their potential application in anti-COVID-19 therapy are thoroughly discussed.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Adjuvants, Immunologic/pharmacology
14.
Phytomedicine ; 103: 154204, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35671635

ABSTRACT

BACKGROUND: Therapeutic failure and drug resistance are common sequelae to insulin resistance associated with type 2 diabetes mellitus (T2DM). Consequently, there is an unmet need of alternative strategies to overcome insulin resistance associated complications. PURPOSE: To demonstrate whether Kutkin (KT), iridoid glycoside enriched fraction of Picrorhiza kurroa extract (PKE) has potential to increase the insulin sensitivity vis à vis glucose uptake in differentiated adipocytes. METHODS: Molecular interaction of KT phytoconstituents, picroside-I (P-I) & picroside- II (P-II) with peroxisome proliferator-activated receptor gamma (PPARγ), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) were analyzed in silico. Cellular viability and adipogenesis were determined by following 3-(4, 5-Dimethylthiazol-2-Yl)-2, 5-Diphenyltetrazolium bromide (MTT) assay and Oil Red-O staining. Further, ELISA kit based triglycerides and diacylglycerol-O-Acyltransferase-1 (DGAT1) were assessed in differentiated adipocytes. ELISA based determination were performed to check the levels of adiponectin and tumor necrosis factor alpha (TNF-α). However, Flow cytometry and immunofluorescence based assays were employed to measure the glucose uptake and glucose transporter 4 (glut4) expression in differentiated adipocytes, respectively. Further to explore the targeted signaling axis, mRNA expression levels of PPARγ, CCAAT/enhancer binding protein α (CEBPα), and glut4 were determined using qRT-PCR and insulin receptor substrate-1 (IRS-1), Insulin receptor substrate-2 (IRS-2), PI3K/Akt, AS160, glut4 followed by protein validation using immunoblotting in differentiated adipocytes. RESULTS: In silico analysis revealed the binding affinities of major constituents of KT (P-I& P-II) with PPARγ/PI3K/Akt. The enhanced intracellular accumulation of triglycerides with concomitant activation of PPARγ and C/EBPα in KT treated differentiated adipocytes indicates augmentation of adipogenesis in a concentration-dependent manner. Additionally, at cellular level, KT upregulated the expression of DAGT1, and decreases fatty acid synthase (FAS), and lipoprotein lipase (LPL), further affirmed improvement in lipid milieu. It was also observed that KT upregulated the levels of adiponectin and reduced TNFα expression, thus improving the secretory functions of adipocytes along with enhanced insulin sensitivity. Furthermore, KT significantly promoted insulin mediated glucose uptake by increasing glut4 translocation to the membrane via PI3/Akt signaling cascade. The results were further validated using PI3K specific inhibitor, wortmannin and findings revealed that KT treatment significantly enhanced the expression and activation of p-PI3K/PI3K and p-Akt/Akt even in case of treatment with PI3K inhibitor wortmannin alone and co-treatment with KT in differentiated adipocytes and affirmed that KT as activator of PI3K/Akt axis in the presence of inhibitor as well. CONCLUSION: Collectively, KT fraction of PKE showed anti-diabetic effects by enhancing glucose uptake in differentiated adipocytes via activation of PI3K/Akt signaling cascade. Therefore, KT may be used as a promising novel natural therapeutic agent for managing T2DMand to the best of our knowledge, this is the first report, showing the efficacy and potential molecular mechanism of KT in enhancing insulin sensitivity and glucose uptake in differentiated adipocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Picrorhiza , 3T3-L1 Cells , Adipocytes , Adiponectin/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cinnamates , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Glycosides , Iridoid Glycosides/pharmacology , Mice , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Triglycerides/metabolism , Vanillic Acid , Wortmannin/pharmacology
15.
J Nutr Biochem ; 107: 109062, 2022 09.
Article in English | MEDLINE | ID: mdl-35609858

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) with growing incidences is a major health concern worldwide. Alteration in cellular redox homeostasis and autophagy plays a critical role in the progression of NAFLD to more severe outcomes. The lack of safe and effective therapy for the disease necessitates the exploration of new therapeutic compounds. Therefore, in the present study, we investigated the potential of phloretin to maintain redox equilibrium and prevent disease progression via modulation of autophagy in NAFLD. Free fatty acid exposed Huh7 cells were used to evaluate the efficacy of phloretin in vitro. Further, phloretin was administered orally to western diet induced NAFLD in C57BL/6J mice at different doses. The chronic exposure to fatty acids and the western diet triggered lipid accumulation in the Huh7 cells and western diet-fed mice liver, respectively. In addition, mitochondrial dysfunction, oxidative stress, inflammation and decreased hepatic autophagy were observed in disease condition. Phloretin encouraged autophagy mediated hepatic lipid clearance and restored mitochondrial membrane potential and redox homeostasis. It also reduced histological injury by reducing hepatic lipogenesis and facilitating fatty acid oxidation. Moreover, findings of the study also revealed the mitigatory effect of phloretin on inflammatory and fibrogenic markers. Altogether, the study suggested that phloretin effectively attenuates NAFLD progression via upregulating autophagy-mediated lipid breakdown and inhibits oxidative damage, hepatic inflammation and fibrosis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Autophagy , Diet, High-Fat , Fatty Acids/metabolism , Inflammation/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Oxidative Stress , Phloretin/pharmacology , Phloretin/therapeutic use
16.
J Nutr Biochem ; 107: 109068, 2022 09.
Article in English | MEDLINE | ID: mdl-35618244

ABSTRACT

Cellular senescence is emerging as a major hallmark of aging, and its modulation presents an effective anti-aging strategy. This study attempted to understand the progression of cellular senescence in vivo, and whether it can be mitigated by chronic consumption of green tea catechin epigallocatechin gallate (EGCG). We profiled cellular senescence in various organs of mice at four different time-points of lifespan, and then explored the influence of EGCG consumption in impacting markers of cellular senescence, inflamm-aging, immunosenescence, and gut dysbiosis. We report that visceral adipose and intestinal tissues are highly vulnerable to cellular senescence due to an increase in DNA damage response, activation of cell cycle inhibitors, and senescence-associated secretory phenotype regulators. With advancing age, dysregulation in nutrient signaling mediators (AMPK/AKT/SIRT3/5), and a decrease in autophagy was also observed. Inflamm-aging markers (TNF-α/IL-1ß) and splenic CD4/CD8 T cell ratio increased with age, while NK cell population decreased. Metagenomic analyses revealed an age-related decrease in the diversity of microbial species and an increase in the abundance of various pathogenic bacterial species. On the other hand, long-term EGCG consumption significantly attenuated markers of DNA damage, cell cycle inhibitors, senescence-associated secretory phenotype regulators, AMPK/AKT signaling, and enhanced SIRT3/5 expression and autophagy. Systemic inflamm-aging indicators decreased, while early T cell activation increased in EGCG fed animals. EGCG also suppressed the abundance of pathogenic bacteria and preserved microbial diversity. Our results suggest that adipose and intestine tissues are prone to cellular senescence and that chronic consumption of EGCG can attenuate several deleterious aspects of aging which could be implicated in developing anti-aging strategies.


Subject(s)
Catechin , Immunosenescence , Sirtuin 3 , AMP-Activated Protein Kinases , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Cellular Senescence , Dysbiosis , Mice , Proto-Oncogene Proteins c-akt , Tea
17.
Inflammopharmacology ; 30(2): 655-666, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35254584

ABSTRACT

Rheumatoid arthritis (RA), a chronic auto-immune disease, is often result of persistent and misdirectional inflammation and cannot be effectually resolved by single-target selective drugs. Present study attempted to uncover anti-arthritic efficacy and governing molecular mechanism of BLFE and its phytoconstituents berberine and rutin, with focus on dysregulated oxi-inflammation and structural integrity during articular damage using Collagen II-CFA-induced RA mice model. NMR-based phytometabolomic analysis revealed presence of phenolics and alkaloids such as berberine and rutin. BLFE, rutin and berberine remarkably mitigated Collagen II-CFA-induced disease severity index, articular damage, immune cells influx and pannus formation. An effective decrease in levels of TNF-α, IL-6, IL-1ß, IFN-γ, IL-13, IL-17, MMPs, RORγt, Ob-cadherin, Cox-2, iNOS and enhancement in IL-10, IL-4 and IL-5, BMP-6/7 was observed in BLFE, rutin and berberine treatments. Molecular mechanistic analysis demonstrated reduction in expression of p-STAT-1/3, p-PI3K, p-Akt, p-JNK, p-p38, p-IκB, p-NF-κB and ß-catenin via BLFE, rutin and berberine. Furthermore, reduced activation of p-ERK and p-GSK3ß and enhanced splenic Tregs was only noticed in BLFE and berberine. Thus, the signifying presence of these phytoconstituents could contribute to the above-mentioned findings. These findings imply that BLFE could be beneficial for assuaging deleterious aspects of RA mediated via perturbed inflammation.


Subject(s)
Arthritis, Experimental , Berberine , Berberis , Lycium , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Collagen , Disease Models, Animal , Fruit , Glycogen Synthase Kinase 3 beta , Inflammation/drug therapy , Lycium/metabolism , Mice , NF-kappa B/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt , Rutin/pharmacology
18.
Inflammopharmacology ; 30(1): 23-49, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35048262

ABSTRACT

The year 2020 is characterised by the COVID-19 pandemic that has quelled more than half a million lives in recent months. We are still coping with the negative repercussions of COVID-19 pandemic in 2021, in which the 2nd wave in India resulted in a high fatality rate. Regardless of emergency vaccine approvals and subsequent meteoric global vaccination drives in some countries, hospitalisations for COVID-19 will continue to occur due to the propensity of mutation in SARS-CoV-2 virus. The immune response plays a vital role in the control and resolution of infectious diseases. However, an impaired immune response is responsible for the severity of the respiratory distress in many diseases. The severe COVID-19 infection persuaded cytokine storm that has been linked with acute respiratory distress syndrome (ARDS), culminates into vital organ failures and eventual death. Thus, safe and effective therapeutics to treat hospitalised patients remains a significant unmet clinical need. In that state, any clue of possible treatments, which save patients life, can be treasured for this time point. Many cohorts and clinical trial studies demonstrated that timely administration of immunomodulatory drugs on severe COVID-19 patients may mitigate the disease severity, hospital stay and mortality. This article addresses the severity and risk factors of hypercytokinemia in COVID-19 patients, with special emphasis on prospective immunomodulatory therapies.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Humans , Immunity , Pandemics , Prospective Studies , SARS-CoV-2 , Severity of Illness Index , Vaccination
19.
Free Radic Biol Med ; 178: 174-188, 2022 01.
Article in English | MEDLINE | ID: mdl-34848370

ABSTRACT

Amplification of oxidative stress can be utilized as a strategy to attenuate cancer progression by instigating apoptosis. However, the duration of positive response to such therapies is limited, as cancer cells eventually develop resistance. The underlying molecular mechanisms of cancer cells to escape apoptosis under oxidative stress is unknown. Employing big data, and its integration with transcriptome, proteome and network analysis in six cancer types revealed system-level interactions between DNA damage response (DDR) proteins, including; DNA damage repair, cell cycle checkpoints and anti-apoptotic proteins. Cancer system biology is used to elucidate mechanisms for cancer progression, but networks defining mechanisms causing resistance is less explored. Using system biology, we identified DDR hubs between G1-S and M phases that were associated with bad prognosis. The increased expression of DDR network was involved in resistance under high oxidative stress. We validated our findings by combining H2O2 induced oxidative stress and DDR inhibitors in human lung cancer cells to conclude the necessity of targeting a 'disease-causing network'. Collectively, our work provides insights toward designing strategies for network pharmacology to combat resistance in cancer research.


Subject(s)
DNA Damage , Neoplasms , Cell Cycle Checkpoints , DNA Repair , Humans , Hydrogen Peroxide , Neoplasms/drug therapy , Neoplasms/genetics , Network Pharmacology
20.
Food Chem ; 373(Pt B): 131561, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34844810

ABSTRACT

Camellia sinensis (tea) is an evergreen plant having bioactive compounds associated with various pharmacological effects, including anti-cancerous activity. These phytochemicals are variedly distributed in plant tissues. A detailed study to understand chemical composition within the economically underutilized tea tissues is required to generate value. Therefore, a comprehensive chemical profiling of underutilized C. sinensis parts [coarse leaves, flowers, fruits (immature);n = 9] was performed by NMR techniques. NMR (1D and 2D) spectroscopy ambiguously identified and quantified fifty-seven metabolites (Coarse leaves: 35, flowers; 42, immature fruits; 45). The statistical analysis showed apparent tissue-specific similarities (26 metabolites) and variations. Further, HPLC-DAD revealed absolute quantification of catechins, caffeine and theanine among the different parts of C. sinensis. Moreover, cytotoxicity studies of tea tissues against colorectal cancer cell lines showed anticancer potentials. This chemical information and anticancer activity of underutilized C. sinensis parts will help to develop value added nutraceutical and cosmeceutical products.


Subject(s)
Camellia sinensis , HCT116 Cells , Humans , Magnetic Resonance Spectroscopy , Metabolomics , Plant Leaves , Tea
SELECTION OF CITATIONS
SEARCH DETAIL
...