Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(17): 6628-6633, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626114

ABSTRACT

Portable nucleic acid testing (NAT) holds great promise for point-of-care disease diagnosis and field-based applications but remains difficult to achieve. Herein, we describe a portable NAT that streamlines loop-mediated isothermal amplification with photosensitization-based color development in a fully sealed 3D-printed multipiece chip. Using a smartphone accessory and an APP, we also introduce a calibration-free quantification approach via digital color sensing and library matching. With these innovative approaches, our detection platform is highly accessible, allowing for rapid and sensitive NAT without requiring sophisticated instruments and well-trained personnel. The field applicability of our NAT platform was demonstrated by detecting tuberculosis infections in clinical sputum samples and food adulteration in commercial salmon meat products.


Subject(s)
Nucleic Acid Amplification Techniques , Printing, Three-Dimensional , Humans , Smartphone , Animals , Color , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Colorimetry , Salmon , Sputum/microbiology , Food Contamination/analysis
2.
Opt Express ; 25(20): 24827-24836, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041295

ABSTRACT

A method to stabilize the resonance wavelength of a depletion-type silicon micro-ring resonator modulator during high-speed operation is described. The method utilizes the intrinsic defect-mediated photo-absorption of a silicon waveguide and results in a modulator chip fabrication process that is free of heterogeneous integration (for example using germanium), thus significantly reducing the complexity and cost of manufacture. Residual defects, present after p-n junction formation, are found to produce an adequate photocurrent for use as a feedback signal, while an integrated heater is used to compensate for thermal drift via closed-loop control. The photocurrent is measured by a source-meter, which simultaneously provides a DC bias to the integrated heater during high-speed operation. A drop-port or an integrated extrinsic detector is not needed. This feedback control method is experimentally demonstrated via a computer-aided proportional-integral-differential loop. The resonance locking is validated for 12.5 Gb/s intensity modulation in a back-to-back bit-error-rate measurement. The stabilization method described is not limited to a specific modulator design and is compatible with speeds greatly in excess of 12.5 Gb/s, in contrast to the bandwidth limitation of other stabilization methods that rely on intrinsic photo-carrier generation through non-linear processes such as two-photon-absorption. Further, the use of intrinsic defects present after standard fabrication insures that no excess loss is associated with this stabilization method.

3.
Opt Express ; 21(17): 19530-7, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-24105500

ABSTRACT

We have fabricated monolithic silicon avalanche photodiodes capable of 10 Gbps operation at a wavelength of 1550 nm. The photodiodes are entirely CMOS process compatible and comprise a p-i-n junction integrated with a silicon-on-insulator (SOI) rib waveguide. Photo-generation is initiated via the presence of deep levels in the silicon bandgap, introduced by ion implantation and modified by subsequent annealing. The devices show a small signal 3 dB bandwidth of 2.0 GHz as well as an open eye pattern at 10 Gbps. A responsivity of 4.7 ± 0.5 A/W is measured for a 600 µm device at a reverse bias of 40 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...