Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cartilage ; 7(1): 82-91, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26958320

ABSTRACT

Nucleofection of chondrocytes has been shown to be an adequate method of transfection. Using Amaxa's nucleofection system, transfection efficiencies up to 89% were achievable for vector (pmaxGFP) and 98% for siRNA (siGLO) into passaged chondrocytes. However, such methods rely on costly commercial kits with proprietary reagents limiting its use in basic science labs and in clinical translation. Bovine-passaged chondrocytes were plated in serum reduced media conditionsand then nucleofected using various in laboratory-produced buffers. Cell attachment, confluency, viability, and transfection efficiency was assessed following nucleofection. For each parameter the buffers were scored and a final rank for each buffer was determined. Buffer denoted as 1M resulted in no significant difference for cell attachment, confluency, and viability as compared to non-nucleofected controls. Nucleofection in 1M buffer, in the absence of DNA vectors, resulted in increased col2, ki67, ccnd1 mRNA levels, and decreased col1 mRNA levels at 4 days of culture. Flow cytometry revealed that the transfection efficiency of 1M buffer was comparable to that obtained using the Amaxa commercial kit. siRNA designed against lamin A/C resulted in an average reduction of lamin A and C proteins to 19% and 8% of control levels, respectively. This study identifies a cost-effective, efficient method of nonviral nucleofection of bovine-passaged chondrocytes using known buffer formulations. Human-passaged chondrocytes could also be successfully nucleofected in 1M buffer. Thus this method should facilitate cost-efficient gene targeting of cells used for articular cartilage repair in a research setting.

2.
PLoS One ; 8(5): e65320, 2013.
Article in English | MEDLINE | ID: mdl-23724138

ABSTRACT

ß-catenin, an adherens junction component and key Wnt pathway effector, regulates numerous developmental processes and supports embryonic stem cell (ESC) pluripotency in specific contexts. The ß-catenin homologue γ-catenin (also known as Plakoglobin) is a constituent of desmosomes and adherens junctions and may participate in Wnt signaling in certain situations. Here, we use ß-catenin((+/+)) and ß-catenin((-/-)) mouse embryonic stem cells (mESCs) to investigate the role of γ-catenin in Wnt signaling and mESC differentiation. Although γ-catenin protein is markedly stabilized upon inhibition or ablation of GSK-3 in wild-type (WT) mESCs, efficient silencing of its expression in these cells does not affect ß-catenin/TCF target gene activation after Wnt pathway stimulation. Nonetheless, knocking down γ-catenin expression in WT mESCs appears to promote their exit from pluripotency in short-term differentiation assays. In ß-catenin((-/-)) mESCs, GSK-3 inhibition does not detectably alter cytosolic γ-catenin levels and does not activate TCF target genes. Intriguingly, ß-catenin/TCF target genes are induced in ß-catenin((-/-)) mESCs overexpressing stabilized γ-catenin and the ability of these genes to be activated upon GSK-3 inhibition is partially restored when wild-type γ-catenin is overexpressed in these cells. This suggests that a critical threshold level of total catenin expression must be attained before there is sufficient signaling-competent γ-catenin available to respond to GSK-3 inhibition and to regulate target genes as a consequence. WT mESCs stably overexpressing γ-catenin exhibit robust Wnt pathway activation and display a block in tri-lineage differentiation that largely mimics that observed upon overexpression of ß-catenin. However, ß-catenin overexpression appears to be more effective than γ-catenin overexpression in sustaining the retention of markers of naïve pluripotency in cells that have been subjected to differentiation-inducing conditions. Collectively, our study reveals a function for γ-catenin in the regulation of mESC differentiation and has implications for human cancers in which γ-catenin is mutated and/or aberrantly expressed.


Subject(s)
Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression , beta Catenin/genetics , gamma Catenin/genetics , Animals , Cell Line , Gene Expression Regulation , Gene Knockdown Techniques , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Humans , Mice , Mice, Knockout , Neurons/cytology , Neurons/metabolism , Protein Stability , Protein Transport , TCF Transcription Factors/genetics , Wnt Signaling Pathway , beta Catenin/metabolism , gamma Catenin/metabolism
3.
PLoS One ; 7(3): e33370, 2012.
Article in English | MEDLINE | ID: mdl-22442686

ABSTRACT

Maternal obesity results in a number of obstetrical and fetal complications with both immediate and long-term consequences. The increased prevalence of obesity has resulted in increasing numbers of women of reproductive age in this high-risk group. Since many of these obese women have been subjected to hypercaloric diets from early childhood we have developed a rodent model of life-long maternal obesity to more clearly understand the mechanisms that contribute to adverse pregnancy outcomes in obese women. Female Sprague Dawley rats were fed a control diet (CON--16% of calories from fat) or high fat diet (HF--45% of calories from fat) from 3 to 19 weeks of age. Prior to pregnancy HF-fed dams exhibited significant increases in body fat, serum leptin and triglycerides. A subset of dams was sacrificed at gestational day 15 to evaluate fetal and placental development. The remaining animals were allowed to deliver normally. HF-fed dams exhibited a more than 3-fold increase in fetal death and decreased neonatal survival. These outcomes were associated with altered vascular development in the placenta, as well as increased hypoxia in the labyrinth. We propose that the altered placental vasculature may result in reduced oxygenation of the fetal tissues contributing to premature demise and poor neonatal survival.


Subject(s)
Dietary Fats/adverse effects , Fetal Death/physiopathology , Obesity/physiopathology , Placenta/blood supply , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue/physiopathology , Animals , Dietary Fats/pharmacology , Disease Models, Animal , Female , Fetal Death/chemically induced , Fetal Death/metabolism , Fetal Death/pathology , Fetus/metabolism , Fetus/pathology , Fetus/physiopathology , Humans , Hypoxia/chemically induced , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia/physiopathology , Leptin/blood , Obesity/blood , Obesity/chemically induced , Obesity/pathology , Placenta/pathology , Placenta/physiopathology , Pregnancy , Rats , Rats, Sprague-Dawley , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...