Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Blood ; 107(8): 3350-8, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16397132

ABSTRACT

Macrophage actin-associated tyrosine phosphorylated protein (MAYP)/PSTPIP2, a PCH protein, is involved in the regulation of macrophage motility. Mutations in a closely related gene, PSTPIP1/CD2BP1, cause a dominantly inherited autoinflammatory disorder known as PAPA syndrome. A mutant mouse obtained by chemical mutagenesis exhibited an autoinflammatory disorder characterized by macrophage infiltration and inflammation, leading to osteolysis and necrosis in paws and necrosis of ears. Positional cloning of this recessive mutation, termed Lupo, identified a T to A nucleotide exchange leading to an amino acid substitution (I282N) in the sequence of MAYP. Mayp(Lp/Lp) disease was transferable by bone marrow transplantation and developed in the absence of lymphocytes. Consistent with the involvement of macrophages, lesion development could be prevented by the administration of clodronate liposomes. MAYP is expressed in monocytes/macrophages and in a Mac1+ subfraction of granulocytes. LPS stimulation increases its expression in macrophages. Because of the instability of the mutant protein, MAYP expression is reduced 3-fold in Mayp(Lp/Lp) macrophages and, on LPS stimulation, does not rise above the level of unstimulated wild-type (WT) cells. Mayp(Lp/Lp) mice expressed elevated circulating levels of several cytokines, including MCP-1; their macrophages exhibited altered cytokine production in vitro. These studies suggest that MAYP plays an anti-inflammatory role in macrophages.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Amino Acid Substitution , Autoimmune Diseases/genetics , Cell Movement/genetics , Cytoskeletal Proteins/genetics , Macrophages/metabolism , Point Mutation , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Bone Density Conservation Agents/administration & dosage , Bone Marrow Transplantation/methods , Cells, Cultured , Clodronic Acid/administration & dosage , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Genes, Recessive/genetics , Granulocytes/metabolism , Granulocytes/pathology , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , Lymphocytes/metabolism , Lymphocytes/pathology , Macrophage-1 Antigen/metabolism , Macrophages/pathology , Mice , Mice, Mutant Strains , Mutagenesis , Osteolysis/genetics , Osteolysis/metabolism , Osteolysis/pathology , Syndrome
2.
Genes Dev ; 18(5): 486-91, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15014044

ABSTRACT

The vestibular system of the inner ear is responsible for the perception of motion and gravity. Key elements of this organ are otoconia, tiny biomineral particles in the utricle and the saccule. In response to gravity or linear acceleration, otoconia deflect the stereocilia of the hair cells, thus transducing kinetic movements into sensorineural action potentials. Here, we present an allelic series of mutations at the otoconia-deficient head tilt (het) locus, affecting the gene for NADPH oxidase 3 (Nox3). This series of mutations identifies for the first time a protein with a clear enzymatic function as indispensable for otoconia morphogenesis.


Subject(s)
Mutation , NADPH Oxidases/genetics , Vestibular Diseases/genetics , Vestibule, Labyrinth/abnormalities , Vestibule, Labyrinth/enzymology , Animals , Chromosome Mapping , Genes, Recessive , Gravity Sensing , Mice , Mice, Mutant Strains , Morphogenesis/genetics , NADPH Oxidases/physiology , Proprioception , Vestibular Diseases/enzymology , Vestibule, Labyrinth/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...