Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 65(9): 1705-12, 2012.
Article in English | MEDLINE | ID: mdl-22508136

ABSTRACT

One of the largest wastewater treatment plants in the Paris conurbation (240,000 m(3)/d) has been studied over several years in order to provide technical and economical information about biological treatment by biofiltration. Biofiltration systems are processes in which carbon and nitrogen pollution of wastewater are treated by ascendant flow through immersed fixed cultures. This paper, focused on technical information, aims: (1) to compare performances of the three biological treatment layouts currently used in biofiltration systems: upstream denitrification (UD), downstream denitrification (DD) and combined upstream-downstream denitrification (U-DD) layouts; and (2) to describe in detail each treatment step. Our study has shown that more than 90% of the carbon and ammoniacal pollution is removed during biological treatment, whatever the layout used. Nitrate, produced during nitrification, is then reduced to atmospheric nitrogen. This reduction is more extensive when the denitrification stage occurs downstream from the treatment (DD layout with methanol addition), whereas it is only partial when it is inserted upstream from the treatment (UD layout - use of endogenous carbonaceous substrate). So, the UD layout leads to a nitrate concentration that exceeds the regulatory threshold in the effluent, and the treatment must be supplemented with a post-denitrification step (U-DD layout). Our work has also shown that the optimal ammonium-loading rate is about 1.1-1.2 kg N-NH(4)(+) per m(3) media (polystyrene) and day. For denitrification, the optimal nitrate-loading rate is about 2.5 kg N per m(3) media (expanded clay) and day in the case of DD with methanol, and is about 0.25 kg N-NO(3)(-) per m(3) media and day in the case of UD with exogenous carbonaceous substrate.


Subject(s)
Carbon/chemistry , Cities , Filtration/methods , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Time Factors , Waste Disposal, Fluid , Water Pollution, Chemical
2.
Water Sci Technol ; 65(9): 1713-9, 2012.
Article in English | MEDLINE | ID: mdl-22508137

ABSTRACT

This work aims to compare the operation costs (energy, reagents, waste management) for the three layouts usually used in wastewater treatment plants incorporating biofilters, using technical and economical data acquired during 10 years of operation of a Parisian plant (Seine Centre, 240,000 m(3) d(-1) -800,000 equivalent inhabitants). The final objective is to establish general economical data and tendencies that can be translated from our study to any biofiltration plant. Our results evidenced the savings achieved through the treatment process combining upstream and downstream denitrification. To use this layout reduced the operating costs by some 10% as compared with conventional processing only comprising downstream denitrification. Operating costs were respectively estimated at 37 and 34 €/1,000 m(3) for downstream denitrification and combining upstream and downstream denitrification layouts.


Subject(s)
Cities , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/economics , Ammonia/chemistry , Nitrates/chemistry , Time Factors , Water Purification/economics , Water Purification/methods
3.
Water Res ; 44(18): 5222-31, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20630555

ABSTRACT

Urban part of Seine River serving as drinking water supply in Paris can be heavily contaminated by Cryptosporidium spp. and Giardia duodenalis. In the absence of agricultural practice in this highly urbanized area, we investigated herein the contribution of treated wastewater to the microbiological quality of this river focusing on these two parasites. Other microorganisms such as faecal bacterial indicators, enteroviruses and oocysts of Toxoplasma gondii were assessed concurrently. Raw wastewaters were heavily contaminated by Cryptosporidium and Giardia (oo)cysts, whereas concentrations of both protozoa in treated wastewater were lower. Treated wastewater, flowed into Seine River, had a parasite concentration closed to the one found along the river, in particular at the entry of a drinking water plant (DWP). Even if faecal bacteria were reliable indicators of a reduction in parasite concentrations during the wastewater treatment, they were not correlated to protozoal contamination of wastewater and river water. Oocysts of T. gondii were not found in both raw and treated wastewater, or in Seine River. Parasitic contamination was shown to be constant in the Seine River up to 40 km upstream Paris. Altogether, these results strongly suggest that treated wastewater does not contribute to the main parasitic contamination of the Seine River usually observed in this urbanized area.


Subject(s)
Rivers/microbiology , Waste Disposal, Fluid , Water Microbiology/standards , Water Purification , Cryptosporidium/isolation & purification , Enterobacteriaceae/isolation & purification , Enterovirus/isolation & purification , Giardia/isolation & purification , Oocysts , Paris , Rivers/parasitology , Rivers/virology , Statistics, Nonparametric , Toxoplasma/isolation & purification , Urban Population , Water Pollution
4.
Sci Total Environ ; 375(1-3): 274-91, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17331564

ABSTRACT

The implementation of the European Water Framework Directive requires new tools for predicting the effect of expected measures taken in the watershed on water quality at the scale of large regional river systems. In the Seine basin, four models, developed in a research context, have been chained to each other to simulate water quality and biogeochemical functioning of the hydrosystem from headwater streams to the coastal marine area. All four models are based on a similar deterministic approach and share a common description of the biogeochemical processes, allowing them to exchange information. Each model differently represents the hydro-sedimentological processes, and uses different time and space resolution, in order to tackle with the specific problematic of each sub-system. This cascade of models has been used for testing a prospective scenario of water resources management at the horizon of 2015, established by Water Authorities of the Seine-Normandy district. The simulation predicts a general improvement of water quality concerning those variables linked to point sources of pollution (ammonium, oxygen, phosphate), even if, locally, this improvement can be insufficient for meeting the expected quality standards. The predicted improvement of the quality of the Seine River downstream from Paris and its estuary is large. However, the predicted very significant drop of phosphate contamination, although beneficial for limiting the problems of coastal marine eutrophication, does not lead to a significant control of phytoplankton development in the rivers upstream from Paris. The simulation also predicts a general increase in nitrate contamination mainly linked to diffuse sources from agricultural areas.


Subject(s)
Models, Theoretical , Rivers/chemistry , Water Supply/standards , France , Water Pollution/analysis
5.
Sci Total Environ ; 375(1-3): 140-51, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17240425

ABSTRACT

To achieve the objectives of the European Water Framework Directive (EWFD), the Seine basin Water Authority has constructed a number of prospective scenarios forecasting the impact of planned investments in water quality. Paris and its suburbs were given special attention because of their impact on the river Seine. Paris sewer system and overflow control is of major concern in future management plans. The composition and fate of the urban effluents have been characterized through numerous in situ samplings, laboratory experiments and modelling studies. The PROSE model was especially designed to simulate the impact on the river of both permanent dry-weather effluents and of highly transient Combined Sewer Overflow (CSO). It was also used to represent the impact of Paris at large spatial and temporal scales. In addition to immediate effects on oxygen levels, heavy particulate organic matter loads that settle downstream of the outlets contribute to permanent oxygen consumption. Until the late 90s, the 50 km long reach of the Seine inside Paris was permanently affected by high oxygen consumption accounting for 112% of the flux upstream of the city. 20% of this demand resulted from CSO. However, the oxygenation of the system is strong due to high phytoplankton activity. As expected, the model results predict a reduction of both permanent dry-weather effluents and CSOs in the future that will greatly improve the oxygen levels (concentrations higher than 7.3 mgO(2) L(-1), 90% of the time instead of 4.0 mgO(2) L(-1) in the late 90s). The main conclusion is that, given the spatial and temporal extent of the impact of many CSOs, water quality models should take into account the CSOs in order to be reliable.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Supply/standards , France , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...