Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 3(6): 1254-60, 2004.
Article in English | MEDLINE | ID: mdl-15595735

ABSTRACT

Continuous modes of renal replacement therapy (CRRT) are increasingly being utilized in the intensive care unit. The removal of cytokines and other inflammatory proteins during ultrafiltration may be responsible for some of the beneficial effects of CRRT. We used proteomic tools to identify proteins found in the ultrafiltrate from a patient with acute renal failure. Identification of these proteins could help elucidate the mechanism(s) of improved outcome with continuous renal replacement therapy. Protein was loaded on a reversed-phase C4 column and eluted with stepwise isocratic flows starting with 0%, 5%, 10%, 25%, and 50% of acetonitrile. Effluent was collected, pooled, desalted, and separated by two-dimensional gel electrophoresis (2DE). Reversed-phase separation improved the resolution and the number of spots seen on the gels. Protein spots were digested with trypsin and spotted onto MALDI plates. Proteins were identified by either peptide mass fingerprinting using a MALDI-TOF mass spectrometer or by peptide sequencing using a MALDI-TOF/TOF tandem mass spectrometer. From 196 spots cut, 47 were identified, representing multiple charge forms of 10 different proteins. Proteins identified were albumin, apolipoprotein A-IV, beta-2-microglobulin, lithostathine, mannose-binding lectin associated serine protease 2 associated protein, plasma retinol-binding protein, transferrin, transthyretin, vitamin D-binding protein and Zn alpha-2 glycoprotein. Continuous renal replacement therapy is frequently used in acutely ill patients with renal failure. Removal of proteins occurs during this process. The physiological significance of this protein removal is unclear. Identification of these proteins will lead to better understanding of the role of protein removal in continuous renal replacement therapy.


Subject(s)
Chromatography, High Pressure Liquid/methods , Proteins/analysis , Proteomics/methods , Renal Replacement Therapy , Dialysis Solutions/chemistry , Electrophoresis, Gel, Two-Dimensional , Hemofiltration , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...