Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 4(1): 211-219, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-34142014

ABSTRACT

Onion-like carbon nanoparticles were synthesized from diamond nanoparticles to be used as the precursor for graphene oxide quantum dots. Onion-like carbon nanoparticles were exfoliated to produce two types of nanoparticles, graphene oxide quantum dots that showed size-dependent fluorescence and highly stable inner cores. Multicolor fluorescent quantum dots were obtained and characterized using different techniques. Polyacrylamide gel electrophoresis showed a range of emission wavelengths spanning from red to blue with the highest intensity shown by green fluorescence. Using high-resolution transmission electron microscopy, we calculated a unit cell size of 2.47 Å in a highly oxidized and defected structure of graphene oxide. A diameter of ca. 4 nm and radius of gyration of ca. 11 Å were calculated using small-angle X-ray scattering. Finally, the change in fluorescence of the quantum dots was studied when single-stranded DNA that is recognized by telomerase was attached to the quantum dots. Their interaction with the telomerase present in cancer cells was observed and a change was seen after six days, providing an important application of these modified graphene oxide quantum dots for cancer sensing.

2.
Anal Chem ; 90(3): 2293-2301, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29260558

ABSTRACT

In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.


Subject(s)
Carbon Fiber/chemistry , Dopamine/chemistry , Adsorption , Dielectric Spectroscopy/methods , Electrochemical Techniques/methods , Microelectrodes
3.
Biosens Bioelectron ; 64: 138-46, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25216450

ABSTRACT

We constructed lactate biosensors by immobilization of lactate oxidase (LOx) onto a single-walled carbon nanotube (SWCNT) electrode. The first step of the sensor construction was the immobilization of oxidized SWCNT onto a platinum electrode modified with 4-aminothiophenol (4-ATP). Two enzyme immobilization methods were used to construct the biosensors, i.e., covalent immobilization using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and physical adsorption. Atomic force microscopy (AFM) experiments confirmed the immobilization of SWCNT during the biosensor construction and X-ray photoelectron spectroscopy (XPS) experiments confirmed covalent immobilization of LOx onto the SWCNT in the first method. The biosensor based on covalent enzyme immobilization showed a sensitivity of 5.8 µA/mM, a linearity up to 0.12 mM of L-lactate, and a detection limit of 4.0 µM. The biosensor based on protein adsorption displayed a sensitivity of 9.4 µA/mM, retaining linearity up to 0.18 mM of L-lactate with a detection limit of 3.0 µM. The difference in the biosensor response can be attributed to protein conformational or dynamical changes during covalent immobilization. The stability of the biosensors was tested at different temperatures and after different storage periods. The thermostability of the biosensors after incubation at 60 °C demonstrated that the biosensor with covalently immobilized LOx retained a higher response compared with the adsorbed protein. Long-term stability experiments show a better residual activity of 40% for the covalently immobilized protein compared to 20% of residual activity for the adsorbed protein after 25 d storage. Covalent protein immobilization was superior compared to adsorption in preserving biosensor functionality over extended time period.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Electrodes , Lactic Acid/analysis , Mixed Function Oxygenases/chemistry , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Adsorption , Enzyme Activation , Enzyme Stability , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure , Nanotubes, Carbon/ultrastructure
4.
BMC Biotechnol ; 10: 57, 2010 Aug 09.
Article in English | MEDLINE | ID: mdl-20696067

ABSTRACT

BACKGROUND: Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically) of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state. RESULTS: First, we investigated the consequences of moisture sorption on the stability and structural conformation of the model enzyme alpha-chymotrypsin (alpha-CT) under controlled humidity conditions. Results showed that alpha-CT aggregates and inactivates as a function of increased relative humidity (RH). Furthermore, alpha-CT loses its native secondary and tertiary structure rapidly at increasing RH. In addition, H/D exchange studies revealed that alpha-CT structural dynamics increased at increasing RH. The magnitude of the structural changes in tendency parallels the solid-state instability data (i.e., formation of buffer-insoluble aggregates, inactivation, and loss of native conformation upon reconstitution). To determine if these moisture-induced instability issues could be ameliorated by chemical glycosylation we proceeded to modify our model protein with chemically activated glycans of differing lengths (lactose and dextran (10 kDa)). The various glycoconjugates showed a marked decrease in aggregation and an increase in residual activity after incubation. These stabilization effects were found to be independent of the glycan size. CONCLUSION: Water sorption leads to aggregation, inactivation, and structural changes of alpha-CT as has been similarly shown to occur for many other proteins. These instabilities correlate with an increase in protein structural dynamics as a result of moisture exposure. In this work, we present a novel methodology to stabilize proteins against structural perturbations in the solid-state since chemical glycosylation was effective in decreasing and/or preventing the traditionally observed moisture-induced aggregation and inactivation. It is suggested that the stabilization provided by these chemically attached glycans comes from the steric hindrance that the sugars conveys on the protein surface therefore preventing the interaction of the protein internal electrostatics with that of the water molecules and thus reducing the protein structural dynamics upon moisture exposure.


Subject(s)
Chymotrypsin/chemistry , Humidity , Dextrans/chemical synthesis , Enzyme Stability , Freeze Drying , Glycoconjugates/chemical synthesis , Glycosylation , Kinetics , Water/chemistry
5.
Biotechnol Bioeng ; 103(1): 77-84, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19132746

ABSTRACT

The effect of structural dynamics on enzyme activity and thermostability has thus far only been investigated in detail for the serine protease alpha-chymotrypsin (for a recent review see Solá et al., Cell Mol Life Sci 2007, 64(16): 2133-2152). Herein, we extend this type of study to a structurally unrelated serine protease, specifically, subtilisin Carlsberg. The protease was incrementally glycosylated with chemically activated lactose to obtain various subtilisin glycoconjugates which were biophysically characterized. Near UV-CD spectroscopy revealed that the tertiary structure was unaffected by the glycosylation procedure. H/D exchange FT-IR spectroscopy was performed to assess the changes in structural dynamics of the enzyme. It was found that increasing the level of glycosylation caused a linearly dependent reduction in structural dynamics. This led to an increase in thermostability and a decrease in the catalytic turnover rate for both, the enzyme acylation and deacylation steps. These results highlight the possibility that a structural dynamics-activity relationship might be a phenomenon generally found in serine proteases.


Subject(s)
Subtilisins/chemistry , Subtilisins/metabolism , Circular Dichroism , Enzyme Stability , Glycosylation , Kinetics , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...