Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 72018 05 31.
Article in English | MEDLINE | ID: mdl-29851381

ABSTRACT

Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses.


Subject(s)
Avoidance Learning/physiology , Limbic System/physiology , Neural Inhibition/physiology , Prefrontal Cortex/physiology , Animals , Anxiety/physiopathology , Fear , Locomotion , Male , Optogenetics , Rats, Sprague-Dawley
2.
Nat Neurosci ; 20(6): 824-835, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28436980

ABSTRACT

Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral nucleus of the amygdala (BLA) and prelimbic (PL) medial prefrontal cortex have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task wherein competing shock- and sucrose-predictive cues were simultaneously presented. The correlated firing primarily displayed a BLA→PL directionality during the shock-associated cue. Furthermore, BLA neurons optogenetically identified as projecting to PL more accurately predicted behavioral responses during competition than unidentified BLA neurons. Finally photostimulation of the BLA→PL projection increased freezing, whereas both chemogenetic and optogenetic inhibition reduced freezing. Therefore, the BLA→PL circuit is critical in governing the selection of behavioral responses in the face of competing signals.


Subject(s)
Amygdala/physiology , Prefrontal Cortex/physiology , Punishment , Reward , 2-Amino-5-phosphonovalerate/administration & dosage , 2-Amino-5-phosphonovalerate/pharmacology , Action Potentials/physiology , Animals , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Cues , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Electric Stimulation , Immobility Response, Tonic/physiology , Male , Microinjections , Neural Inhibition/physiology , Neural Pathways/physiology , Prefrontal Cortex/drug effects , Quinoxalines/administration & dosage , Quinoxalines/pharmacology , Rats , Rats, Transgenic , Sucrose
SELECTION OF CITATIONS
SEARCH DETAIL
...