Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474123

ABSTRACT

Radiotherapy-induced cardiac toxicity and consequent diseases still represent potential severe late complications for many cancer survivors who undergo therapeutic thoracic irradiation. We aimed to assess the phenotypic and paracrine features of resident cardiac mesenchymal stromal cells (CMSCs) at early follow-up after the end of thoracic irradiation of the heart as an early sign and/or mechanism of cardiac toxicity anticipating late organ dysfunction. Resident CMSCs were isolated from a rat model of fractionated thoracic irradiation with accurate and clinically relevant heart dosimetry that developed delayed dose-dependent cardiac dysfunction after 1 year. Cells were isolated 6 and 12 weeks after the end of radiotherapy and fully characterized at the transcriptional, paracrine, and functional levels. CMSCs displayed several altered features in a dose- and time-dependent trend, with the most impaired characteristics observed in those exposed in situ to the highest radiation dose with time. In particular, altered features included impaired cell migration and 3D growth and a and significant association of transcriptomic data with GO terms related to altered cytokine and growth factor signaling. Indeed, the altered paracrine profile of CMSCs derived from the group at the highest dose at the 12-week follow-up gave significantly reduced angiogenic support to endothelial cells and polarized macrophages toward a pro-inflammatory profile. Data collected in a clinically relevant rat model of heart irradiation simulating thoracic radiotherapy suggest that early paracrine and transcriptional alterations of the cardiac stroma may represent a dose- and time-dependent biological substrate for the delayed cardiac dysfunction phenotype observed in vivo.


Subject(s)
Heart Diseases , Mesenchymal Stem Cells , Radiation Injuries , Rats , Humans , Animals , Cardiotoxicity/metabolism , Endothelial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Phenotype , Heart Diseases/metabolism , Radiation Injuries/metabolism
2.
Eur J Clin Invest ; 54(4): e14140, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38050790

ABSTRACT

BACKGROUND: Traditional combustion cigarette (TCC) smoking is an established risk factor for several types of cancer and cardiovascular diseases. Circulating microRNAs (miRNAs) represent key molecules mediating pathogenetic mechanisms, and potential biomarkers for personalized risk assessment. TCC smoking globally changes the profile of circulating miRNAs. The use of heat-not-burn cigarettes (HNBCs) as alternative smoking devices is rising exponentially worldwide, and the circulating miRNA profile of chronic HNBC smokers is unknown. We aimed at defining the circulating miRNA profile of chronic exclusive HNBC smokers, and identifying potentially pathogenetic signatures. METHODS: Serum samples were obtained from 60 healthy young subjects, stratified in chronic HNBC smokers, TCC smokers and nonsmokers (20 subjects each). Three pooled samples per group were used for small RNA sequencing, and the fourth subgroup constituted the validation set. RESULTS: Differential expression analysis revealed 108 differentially expressed miRNAs; 72 exclusively in TCC, 10 exclusively in HNBC and 26 in both smoker groups. KEGG pathway analysis on target genes of the commonly modulated miRNAs returned cancer and cardiovascular disease associated pathways. Stringent abundance and fold-change criteria nailed down our functional bioinformatic analyses to a network where miR-25-3p and miR-221-3p are main hubs. CONCLUSION: Our results define for the first time the miRNA profile in the serum of exclusive chronic HNBC smokers and suggest a significant impact of HNBCs on circulating miRNAs.


Subject(s)
Cigarette Smoking , Circulating MicroRNA , MicroRNAs , Neoplasms , Humans , Hot Temperature , Healthy Volunteers , MicroRNAs/genetics
4.
Heliyon ; 9(6): e16774, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37313136

ABSTRACT

Pomegranate (Punica granatum L.) fruits are a historical agricultural product of the Mediterranean basin that became increasingly popular in the latest years for being rich in antioxidants and other micronutrients, and are extensively commercialized as fruits, juice, jams and, in some Eastern countries, as a fermented alcoholic beverage. In this work, four different pomegranate wines specifically designed using combinations of two cultivars (Jolly Red and Smith) and two yeast starters with markedly different characteristics (Saccharomyces cerevisiae Clos and Saccharomyces cerevisiae ex-bayanus EC1118) were analyzed. The chemical characterization of the wines together with the originating unfermented juices was performed by 1H NMR spectroscopy metabolomic analysis. The full spectra were used for unsupervised and supervised statistical multivariate analysis (MVA), namely Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), and sparse PCA (SPCA). The MVA of the wines showed a clear discrimination between the cultivars, and a smaller, yet significant, discrimination between the yeasts used. In particular, a higher content of citrate and gallate was observed for the Smith cv. and, on the contrary, a statistically significant higher content of fructose, malate, glycerol, 2,3 butanediol, trigonelline, aromatic amino acids and 4-hydrophenylacetate was observed in Jolly Red pomegranate wines samples. Significant interaction among the pomegranate cultivar and the fermenting yeast was also observed. Sensorial analysis was performed by a panel of testing experts. MVA of tasting data showed that the cultivar significantly affected the organoleptic parameters considered, while the yeast had a minor impact. Correlation analysis between NMR-detected metabolites and organoleptic descriptors identified several potential sensorially-active molecules as those significantly impacting the characteristics of the pomegranate wines.

5.
Curr Stem Cell Res Ther ; 18(4): 440-444, 2023.
Article in English | MEDLINE | ID: mdl-35927909

ABSTRACT

Smoking habits represent a cardiovascular risk factor with a tremendous impact on health. Other than damaging differentiated and functional cells of the cardiovascular system, they also negatively affect reparative mechanisms, such as those involved in cardiac fibrosis and in endothelial progenitor cell (EPC) activation. In recent years, alternative smoking devices, dubbed modified tobacco risk products (MRPs), have been introduced, but their precise impact on human health is still under evaluation. Also, they have not been characterized yet about the possible negative effects on cardiovascular reparative and regenerative cells, such as EPCs or pluripotent stem cells. In this perspective, we critically review the still scarce available data on the effects of MRPs on molecular and cellular mechanisms of cardiovascular repair and regeneration.


Subject(s)
Endothelial Progenitor Cells , Tobacco Products , Humans , Nicotiana , Smoke , Smoking
6.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232943

ABSTRACT

Ex vivo modelling systems for cardiovascular research are becoming increasingly important in reducing lab animal use and boosting personalized medicine approaches. Integrating multiple cell types in complex setups adds a higher level of significance to the models, simulating the intricate intercellular communication of the microenvironment in vivo. Cardiac fibrosis represents a key pathogenetic step in multiple cardiovascular diseases, such as ischemic and diabetic cardiomyopathies. Indeed, allowing inter-cellular interactions between cardiac stromal cells, endothelial cells, cardiomyocytes, and/or immune cells in dedicated systems could make ex vivo models of cardiac fibrosis even more relevant. Moreover, culture systems with 3D architectures further enrich the physiological significance of such in vitro models. In this review, we provide a summary of the multicellular 3D models for the study of cardiac fibrosis described in the literature, such as spontaneous microtissues, bioprinted constructs, engineered tissues, and organs-on-chip, discussing their advantages and limitations. Important discoveries on the physiopathology of cardiac fibrosis, as well as the screening of novel potential therapeutic molecules, have been reported thanks to these systems. Future developments will certainly increase their translational impact for understanding and modulating mechanisms of cardiac fibrosis even further.


Subject(s)
Endothelial Cells , Tissue Engineering , Animals , Cell Communication , Fibrosis , Myocytes, Cardiac/metabolism
7.
Cell Prolif ; 55(11): e13312, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35946052

ABSTRACT

OBJECTIVES: Extracellular vesicles (EVs) are key biological mediators of several physiological functions within the cell microenvironment. Platelets are the most abundant source of EVs in the blood. Similarly, platelet lysate (PL), the best platelet derivative and angiogenic performer for regenerative purposes, is enriched of EVs, but their role is still too poorly discovered to be suitably exploited. Here, we explored the contribution of the EVs in PL, by investigating the angiogenic features extrapolated from that possessed by PL. METHODS: We tested angiogenic ability and molecular cargo in 3D bioprinted models and by RNA sequencing analysis of PL-derived EVs. RESULTS: A subset of small vesicles is highly represented in PL. The EVs do not retain aggregation ability, preserving a low redox state in human umbilical vein endothelial cells (HUVECs) and increasing the angiogenic tubularly-like structures in 3D endothelial bioprinted constructs. EVs resembled the miRNome profile of PL, mainly enriched with small RNAs and a high amount of miR-126, the most abundant angiogenic miRNA in platelets. The transfer of miR-126 by EVs in HUVEC after the in vitro inhibition of the endogenous form, restored angiogenesis, without involving VEGF as a downstream target in this system. CONCLUSION: PL is a biological source of available EVs with angiogenic effects involving a miRNAs-based cargo. These properties can be exploited for targeted molecular/biological manipulation of PL, by potentially developing a product exclusively manufactured of EVs.


Subject(s)
Extracellular Vesicles , MicroRNAs , Humans , Human Umbilical Vein Endothelial Cells , MicroRNAs/genetics , Neovascularization, Pathologic , Blood Platelets
8.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35887248

ABSTRACT

The cellular heterogeneity of the tumor environment of breast cancer (BC) is extremely complex and includes different actors such as neoplastic, stromal, and immunosuppressive cells, which contribute to the chemical and mechanical modification of the environment surrounding the tumor-exasperating immune-escaping mechanisms. In addition to molecular signals that make the tumor microenvironment (TME) unacceptable for the penetrance of the immune system, the physical properties of tumoral extracellular matrix (tECM) also have carved out a fundamental role in the processes of the protection of the tumor niche. Tumor-associated macrophages (TAMs), with an M2 immunosuppressive phenotype, are important determinants for the establishment of a tumor phenotype excluded from T cells. NF-κB transcription factors orchestrate innate immunity and represent the common thread between inflammation and cancer. Many studies have focused on canonical activation of NF-κB; however, activation of non-canonical signaling predicts poor survival and resistance to therapy. In this scenario, we demonstrated the existence of an unusual association of NF-κB components in TAMs that determines the deposition of HSPG2 that affects the stiffness of tECM. These results highlight a new mechanism counterbalanced between physical factors and a new perspective of mechano-pathology to be targeted to counteract immune evasion in BC.


Subject(s)
NF-kappa B , Neoplasms , Humans , Macrophages , Neoplasms/pathology , Tumor Microenvironment , Tumor-Associated Macrophages
9.
Circ Res ; 131(3): 239-257, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35770662

ABSTRACT

BACKGROUND: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interferes with the interactions of the YAP/TAZ (transcriptional coactivator with PDZ-binding motif) complex with their cognate transcription factors TEADs (TEA domain transcription factors), under high-strain and profibrotic stimulation. METHODS: We employed high content imaging, 2-dimensional/3-dimensional culture, atomic force microscopy mapping, and molecular methods to prove the role of cell/nuclear straining in YAP-dependent fibrotic programming in a mouse model of ischemia-dependent cardiac fibrosis and in human-derived primitive cardiac stromal cells. We also tested treatment of cells with Verteporfin, a drug known to prevent the association of the YAP/TAZ complex with their cognate transcription factors TEADs. RESULTS: Our experiments suggested that pharmacologically targeting the YAP-dependent pathway overrides the profibrotic activation of cardiac stromal cells by mechanical cues in vitro, and that this occurs even in the presence of profibrotic signaling mediated by TGF-ß1 (transforming growth factor beta-1). In vivo administration of Verteporfin in mice with permanent cardiac ischemia reduced significantly fibrosis and morphometric remodeling but did not improve cardiac performance. CONCLUSIONS: Our study indicates that preventing molecular translation of mechanical cues in cardiac stromal cells reduces the impact of cardiac maladaptive remodeling with a positive effect on fibrosis.


Subject(s)
Adaptor Proteins, Signal Transducing , Phosphoproteins , Adaptor Proteins, Signal Transducing/metabolism , Animals , Fibrosis , Humans , Mice , Phosphoproteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Verteporfin , YAP-Signaling Proteins
10.
J Pathol ; 258(2): 136-148, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35751644

ABSTRACT

Cardiac stromal cells (CSCs) are the main players in fibrosis. Dysmetabolic conditions (metabolic syndrome-MetS, and type 2 diabetes mellitus-DM2) are strong pathogenetic contributors to cardiac fibrosis. Moreover, modulation of the oxidative state (OxSt) and autophagy is a fundamental function affecting the fibrotic commitment of CSCs, that are adversely modulated in MetS/DM2. We aimed to characterize CSCs from dysmetabolic patients, and to obtain a beneficial phenotypic setback from such fibrotic commitment by modulation of OxSt and autophagy. CSCs were isolated from 38 patients, stratified as MetS, DM2, or controls. Pharmacological modulation of OxSt and autophagy was obtained by treatment with trehalose and NOX4/NOX5 inhibitors (TREiNOX). Flow-cytometry and real-time quantitative polymerase chain reaction (RT-qPCR) analyses showed significantly increased expression of myofibroblasts markers in MetS-CSCs at baseline (GATA4, ACTA2, THY1/CD90) and after starvation (COL1A1, COL3A1). MetS- and DM2-CSCs displayed a paracrine profile distinct from control cells, as evidenced by screening of 30 secreted cytokines, with a significant reduction in vascular endothelial growth factor (VEGF) and endoglin confirmed by enzyme-linked immunoassay (ELISA). DM2-CSCs showed significantly reduced support for endothelial cells in angiogenic assays, and significantly increased H2 O2 release and NOX4/5 expression levels. Autophagy impairment after starvation (reduced ATG7 and LC3-II proteins) was also detectable in DM2-CSCs. TREiNOX treatment significantly reduced ACTA2, COL1A1, COL3A1, and NOX4 expression in both DM2- and MetS-CSCs, as well as GATA4 and THY1/CD90 in DM2, all versus control cells. Moreover, TREiNOX significantly increased VEGF release by DM2-CSCs, and VEGF and endoglin release by both MetS- and DM2-CSCs, also recovering the angiogenic support to endothelial cells by DM2-CSCs. In conclusion, DM2 and MetS worsen microenvironmental conditioning by CSCs. Appropriate modulation of autophagy and OxSt in human CSCs appears to restore these features, mostly in DM2-CSCs, suggesting a novel strategy against cardiac fibrosis in dysmetabolic patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Diabetes Mellitus, Type 2 , Vascular Endothelial Growth Factor A , Autophagy , Diabetes Mellitus, Type 2/genetics , Endoglin/metabolism , Endothelial Cells/metabolism , Fibrosis , Humans , Oxidative Stress , Stromal Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism
11.
Cell Death Discov ; 8(1): 149, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365624

ABSTRACT

Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.

12.
Am J Transl Res ; 14(2): 1172-1187, 2022.
Article in English | MEDLINE | ID: mdl-35273721

ABSTRACT

Cardiac stromal cells have been long underestimated in their functions in homeostasis and repair. Recent evidence has changed this perspective in that many more players and facets than just "cardiac fibroblasts" have entered the field. Single cell transcriptomic studies on cardiac interstitial cells have shed light on the phenotypic plasticity of the stroma, whose transcriptional profile is dynamically regulated in homeostatic conditions and in response to external stimuli. Different populations and/or functional states that appear in homeostasis and pathology have been described, particularly increasing the complexity of studying the cardiac response to injury. In this review, we outline current phenotypical and molecular markers, and the approaches developed for identifying and classifying cardiac stromal cells. Significant advances in our understanding of cardiac stromal populations will provide a deeper knowledge on myocardial functional cellular components, as well as a platform for future developments of novel therapeutic strategies to counteract cardiac fibrosis and adverse cardiac remodeling.

15.
Front Immunol ; 11: 575792, 2020.
Article in English | MEDLINE | ID: mdl-33329541

ABSTRACT

Recent preclinical and clinical evidence suggest that immune system has a role in the progression and prognosis of Amyotrophic Lateral Sclerosis (ALS), but the identification of a clear mechanism and immune players remains to be elucidated. Here, we have investigated, in 30 and 60 days (presymptomatic) and 120 days (symptomatic) old SOD1-G93A mice, systemic, peripheral, and central innate and adaptive immune and inflammatory response, correlating it with the progression of the neurodegeneration in neuromuscular junction, sciatic nerves, and spinal cord. Surprisingly, we found a very initial (45-60 days) presence of IgG in sciatic nerves together with a gradual enhancement of A20/TNFAIP3 (protein controlling NF-κB signalling) and a concomitantly significant increase and activation of circulating mast cells (MCs) as well as MCs and macrophages in sciatic nerve and an enhancement of IL-6 and IL-10. This immunological frame coincided with a myelin aggregation. The 30-60 days old SOD1-G93A mice didn't show real elements of neuroinflammation and neurodegeneration in spinal cord. In 120 days old mice macrophages and monocytes are widely diffused in sciatic nerves, peripheral neurodegeneration reaches the tip, high circulating levels of TNFα and IL-2 were found and spinal cord exhibits clear signs of neural damage and infiltrating immune cells. Our results underpin a clear immunological disorder at the origin of ALS axonopathy, in which MCs are involved in the initiation and sustaining of inflammatory events. These data cannot be considered a mere epiphenomenon of motor neuron degeneration and reveal new potential selective immune targets in ALS therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Immunity, Innate , Neuroimmunomodulation , Neuromuscular Junction/immunology , Sciatic Nerve/immunology , Spinal Cord/immunology , Superoxide Dismutase-1/metabolism , Wallerian Degeneration , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Progression , Genetic Predisposition to Disease , Interleukin-10/metabolism , Interleukin-6/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Mutation , NF-kappa B/metabolism , Neuromuscular Junction/enzymology , Neuromuscular Junction/pathology , Phenotype , Sciatic Nerve/enzymology , Sciatic Nerve/pathology , Signal Transduction , Spinal Cord/enzymology , Spinal Cord/pathology , Superoxide Dismutase-1/genetics , Time Factors
16.
J Am Heart Assoc ; 9(24): e017000, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33317369

ABSTRACT

Background The role of microRNAs dysregulation in tobacco cigarette smoking-induced vascular damage still needs to be clarified. We assessed the acute effects of tobacco cigarette smoking on endothelial cell-related circulating microRNAs in healthy subjects. In addition, we investigated the potential role of microRNAs in smoking-dependent endothelial cell damage. Methods and Results A panel of endothelial-related microRNAs was quantified in healthy subjects before and after smoking 1 tobacco cigarette. Serum levels of miR-155 were found to be significantly increased shortly after smoking. We also observed a progressive and significant miR-155 accumulation in culture media of human endothelial cells after 30 minutes and up to 4 hours of cigarette smoke condensate treatment in vitro without evidence of cell death, indicating that miR-155 can be released by endothelial cells in response to smoking stress. Cigarette smoke condensate appeared to enhance oxidative stress and impair cell survival, angiogenesis, and NO metabolism in human endothelial cells. Notably, these effects were abrogated by miR-155 inhibition. We also observed that miR-155 inhibition rescued the deleterious effects of cigarette smoke condensate on endothelial-mediated vascular relaxation and oxidative stress in isolated mouse mesenteric arteries. Finally, we found that exogenous miR-155 overexpression mimics the effects of smoking stress by inducing the upregulation of inflammatory markers, impairing angiogenesis and reducing cell survival. These deleterious effects were associated with downregulation of vascular endothelial growth factor and endothelial NO synthetase. Conclusions Our results suggest that miR-155 dysregulation may contribute to the deleterious vascular effects of tobacco smoking.


Subject(s)
Cigarette Smoking/adverse effects , Endothelial Cells/metabolism , MicroRNAs/blood , Nicotiana/adverse effects , Adult , Angiogenesis Inducing Agents/metabolism , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cell Survival , Down-Regulation , Endothelial Cells/pathology , Female , Humans , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/pathology , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Models, Animal , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/physiology , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
18.
Int J Mol Sci ; 21(21)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114386

ABSTRACT

Cardiac adverse remodeling is characterized by biological changes that affect the composition and architecture of the extracellular matrix (ECM). The consequently disrupted signaling can interfere with the balance between cardiogenic and pro-fibrotic phenotype of resident cardiac stromal primitive cells (CPCs). The latter are important players in cardiac homeostasis and can be exploited as therapeutic cells in regenerative medicine. Our aim was to compare the effects of human decellularized native ECM from normal (dECM-NH) or failing hearts (dECM-PH) on human CPCs. CPCs were cultured on dECM sections and characterized for gene expression, immunofluorescence, and paracrine profiles. When cultured on dECM-NH, CPCs significantly upregulated cardiac commitment markers (CX43, NKX2.5), cardioprotective cytokines (bFGF, HGF), and the angiogenesis mediator, NO. When seeded on dECM-PH, instead, CPCs upregulated pro-remodeling cytokines (IGF-2, PDGF-AA, TGF-ß) and the oxidative stress molecule H2O2. Interestingly, culture on dECM-PH was associated with impaired paracrine support to angiogenesis, and increased expression of the vascular endothelial growth factor (VEGF)-sequestering decoy isoform of the KDR/VEGFR2 receptor. Our results suggest that resident CPCs exposed to the pathological microenvironment of remodeling ECM partially lose their paracrine angiogenic properties and release more pro-fibrotic cytokines. These observations shed novel insights on the crosstalk between ECM and stromal CPCs, suggesting also a cautious use of non-healthy decellularized myocardium for cardiac tissue engineering approaches.


Subject(s)
Extracellular Matrix/metabolism , Heart Failure/pathology , Mesenchymal Stem Cells/cytology , Adult , Aged , Animals , Cell Survival , Cells, Cultured , Coculture Techniques , Cytokines/genetics , Cytokines/metabolism , Extracellular Matrix/genetics , Female , Fibrosis , Heart Failure/genetics , Heart Failure/metabolism , Humans , Hydrogen Peroxide/metabolism , Male , Mesenchymal Stem Cells/metabolism , Middle Aged
19.
Curr Stem Cell Res Ther ; 15(8): 723-738, 2020.
Article in English | MEDLINE | ID: mdl-31971115

ABSTRACT

Large scale projects such as FANTOM and ENCODE led to a revolution in our comprehension of the mammalian transcriptomes by revealing that ~53% of the produced RNAs do not encode for proteins. These transcripts, defined as noncoding RNAs (ncRNAs), constitute a heterogeneous group of molecules which can be categorized in two main classes, namely small and long, according to their length. In animals, the first-class includes Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs) and microRNAs (miRNAs). Among them, the best-characterized subgroup is represented by miRNAs, which are known to regulate gene expression largely at the post-transcriptional level. In contrast, long noncoding RNAs (lncRNAs) represent a more heterogeneous group of > 200 nucleotides long transcripts, that act through a variety of mechanisms at both transcriptional and posttranscriptional level. Here, we discuss how miRNAs and lncRNAs are emerging as pivotal regulators of cardiac muscle development and how the alteration of ncRNA expression was seen to disturb the physiology of all the different cell types forming the cardiac tissue. Particular emphasis is given to those species that are expressed and are known to regulate the capacity of cardiac progenitor cells (CPCs), currently used in regenerative medicine protocols, to proliferate and differentiate. Understanding how the ncRNAmediated circuitries regulate heart homeostasis is one of the research areas expected to have a high impact, improving the therapeutic efficacy of stem/progenitor-cells treatments for translation into clinical applications.


Subject(s)
MicroRNAs , RNA, Long Noncoding , RNA, Small Interfering , Animals , Cell Differentiation/genetics , Heart , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics
20.
Autophagy ; 16(8): 1468-1481, 2020 08.
Article in English | MEDLINE | ID: mdl-31679456

ABSTRACT

The identification of the mechanisms predisposing to stroke may improve its preventive and therapeutic strategies in patients with essential hypertension. The role of macroautophagy/autophagy in the development of hypertension-related stroke needs to be clarified. We hypothesized that a defective autophagy may favor hypertension-related spontaneous stroke by promoting mitochondrial dysfunction. We studied autophagy in the stroke-prone spontaneously hypertensive (SHRSP) rat, which represents a clinically relevant model of stroke associated with high blood pressure. We assessed autophagy, mitophagy and NAD+:NADH levels in brains of SHRSP and stroke-resistant SHR fed with high salt diet. Vascular smooth muscle cells silenced for the mitochondrial complex I subunit Ndufc2 gene (NADH:ubiquinone oxidoreductase subunit C2) and cerebral endothelial cells isolated from SHRSP were also used to assess autophagy/mitophagy and mitochondrial function in response to high salt levels. We found a reduction of autophagy in brains of high salt-fed SHRSP. Autophagy impairment was associated with NDUFC2 downregulation, mitochondrial dysfunction and NAD+ depletion. Restoration of NAD+ levels by nicotinamide administration reactivated autophagy and reduced stroke development in SHRSP. A selective reactivation of autophagy/mitophagy by Tat-Beclin 1 also reduced stroke occurrence, restored autophagy/mitophagy and improved mitochondrial function. Endothelial progenitor cells (EPCs) from subjects homozygous for the thymine allele variant at NDUFC2/rs11237379, which is associated with NDUFC2 deficiency and increased stroke risk, displayed an impairment of autophagy and increased senescence in response to high salt levels. EPC senescence was rescued by Tat-Beclin 1. Pharmacological activation of autophagy may represent a novel therapeutic strategy to reduce stroke occurrence in hypertension. ABBREVIATIONS: 10 VSMCs: aortic vascular smooth muscle cells; COX4I1/COX IV: cytochrome c oxidase subunit 4I1; ECs: endothelial cells; EPCs: endothelial progenitor cells; JD: Japanese-style diet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAD: nicotinamide adenine dinucleotide; NDUFC2: NADH:ubiquinone oxidoreductase subunit C2; NMN: nicotinamide mononucleotide; RD: regular diet; SHRSP: stroke-prone spontaneously hypertensive rat; SHRSR: stroke-resistant spontaneously hypertensive rat.


Subject(s)
Autophagy , Hypertension/complications , Stroke/etiology , Animals , Beclin-1/metabolism , Brain/pathology , Cell Survival , Down-Regulation , Endothelial Progenitor Cells/metabolism , Male , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitophagy , NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Rats, Inbred SHR
SELECTION OF CITATIONS
SEARCH DETAIL
...