Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 45(50): 14926-32, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17154530

ABSTRACT

Dihydroorotate dehydrogenases (DHODs) oxidize dihydroorotate (DHO) to orotate using the FMN prosthetic group to abstract a hydride equivalent from C6 and a protein residue (Ser for Class 2 DHODs) to deprotonate C5. The fundamental question of whether the scission of the two DHO C-H bonds is concerted or stepwise was addressed for two Class 2 enzymes, those from Escherichia coli and Homo sapiens, by determining kinetic isotope effects on flavin reduction in anaerobic stopped-flow experiments. Isotope effects were determined for the E. coli enzyme at two pH values below a previously reported pKa controlling reduction [Palfey, B. A., Björnberg, O., and Jensen K. F. (2001) Biochemistry 40, 4381-4390] and were about 3-fold for DHO labeled at the 5-position, about 4-fold for DHO labeled at the 6-position, and about 6-7-fold for DHO labeled at both the 5- and 6-positions. These isotope effects are consistent with either a stepwise oxidation of DHO or a concerted mechanism with significant quantum mechanical tunneling. At a pH value above the pKa controlling reduction, no isotope effect was observed in E. coli DHOD for DHO deuterated at the 5-position (the proton donor in the reaction). This is consistent with a stepwise reaction; above the (kinetic) pKa, the deprotonation of C5 is fast enough that it does not contribute to the observed rate constant and, therefore, is not isotopically sensitive. All available information points to Ser acting as a component in a proton relay network which allows its transient deprotonation. The H. sapiens DHOD also appears to have a pKa near 9.4 controlling reduction, similar to that previously reported for the E. coli enzyme. Similar KIEs were obtained with the H. sapiens enzyme at a pH value below the pKa.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Flavin Mononucleotide/chemistry , Orotic Acid/analogs & derivatives , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Binding Sites/genetics , Catalysis , Dihydroorotate Dehydrogenase , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Flavin Mononucleotide/metabolism , Humans , Hydrogen-Ion Concentration , Models, Chemical , Orotic Acid/chemistry , Orotic Acid/metabolism , Oxidation-Reduction , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Serine/chemistry , Serine/genetics , Serine/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...