Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Res ; 200: 1-8, 2021 04.
Article in English | MEDLINE | ID: mdl-33493983

ABSTRACT

BACKGROUND: The novel coronavirus SARS-CoV-2, responsible for the 2019-2020 global (COVID-19) pandemic, is a respiratory virus associated with the development of thromboembolic complications and respiratory failure in severe cases. Increased risk of pulmonary embolism and thrombosis has been identified in COVID-19 patients, alongside accompanying elevations in potential prognostic biomarkers, including D-dimer, IL-6 and cardiac specific troponins. Our aim was to provide a scoping review of the available literature regarding thrombosis risk, other cardiovascular implications, and their biomarkers in COVID-19 to highlight potential disease mechanisms. METHODS: Authors conducted a literature search in PubMed using MeSH headings "disseminated intravascular coagulation", "pulmonary embolism", "thromb*", "stroke", "myocardial infarction" and "acute lung injury", as well as terms "COVID-19", "SARS-CoV-2", "2019 novel coronavirus" and "2019-nCoV". RESULTS AND CONCLUSIONS: COVID-19 disease is characterised by the interactions between hyperactive coagulation and complement systems - induced by hyper-inflammatory conditions, resulting in a pro-thrombotic state and diffuse tissue injury. There are several promising prognostic markers of disease severity, with D-dimer the most significant. The presence of thrombocytopenia appears to be a key indicator of patient deterioration. Further research is required to understand the underlying pathophysiology in COVID-19 and its implications in disease progression and patient management. Randomised trials are urgently needed to determine the safety of proposed therapeutic anticoagulation with heparin and the role for anti-platelet agents, such as Ticagrelor, in patient management.


Subject(s)
COVID-19/complications , Thromboembolism/virology , Thrombosis/virology , Biomarkers , Humans , Thrombocytopenia/virology
2.
Res Pract Thromb Haemost ; 4(8): 1269-1281, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33313466

ABSTRACT

BACKGROUND: Abnormal clot structure has been identified in patients with thrombotic disorders. Anticoagulant therapy offers clear benefits for thrombosis prevention and treatment by reducing blood clot formation and size; nevertheless, there are limited data on the effects of different anticoagulants, where clotting is initiated with different triggers, on clot structure. OBJECTIVES: Our aim was to investigate the effects of vitamin K antagonists and factor Xa inhibitors on clot structure. METHODS: Clots from pooled plasma spiked with rivaroxaban, apixaban, or enoxaparin, as well as plasma from patients on warfarin, were compared to plasma without anticoagulation. The kinetic profile of polymerizing clots was obtained by turbidity, fiber density was determined by confocal microscopy, clot pore size was investigated by permeation, and fiber size was analyzed using scanning electron microscopy. Clotting agonist was either tissue factor or thrombin. RESULTS: Following clotting with tissue factor, all anticoagulated clots had a significantly increased lag time, with the exception of enoxaparin. Rivaroxaban additionally led to significantly less dense and more permeable clots, with thicker fibers. In contrast, turbidity analysis following initiation with thrombin showed few effects of anticoagulation, with only enoxaparin leading to a prolonged lag time. Enoxaparin clots made with thrombin were less dense and more permeable. CONCLUSION: Our results show that anticoagulants modulate clot structure particularly when induced by tissue factor, most likely due to reduction of thrombin generation. We propose that the effects of different anticoagulants could be assessed with a global clot structure measurement such as permeation or turbidity, providing information on clot phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...