Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Emerg Physicians Open ; 5(1): e13126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38352149
2.
Clin Cancer Res ; 28(6): 1229-1239, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35031547

ABSTRACT

PURPOSE: Patients with glioblastoma (GBM) are treated with radiotherapy (RT) and temozolomide (TMZ). These treatments may cause prolonged systemic lymphopenia, which itself is associated with poor outcomes. NT-I7 is a long-acting IL7 that expands CD4 and CD8 T-cell numbers in humans and mice. We tested whether NT-I7 prevents systemic lymphopenia and improves survival in mouse models of GBM. EXPERIMENTAL DESIGN: C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day × 5 days), TMZ (33 mg/kg/day × 5 days), and/or NT-I7 (10 mg/kg on the final day of RT). We followed the mice for survival while serially analyzing levels of circulating T lymphocytes. We assessed regulatory T cells (Treg) and cytotoxic T lymphocytes in the tumor microenvironment, cervical lymph nodes, spleen, and thymus, and hematopoietic stem and progenitor cells in the bone marrow. RESULTS: GBM tumor-bearing mice treated with RT+NT-I7 increased T lymphocytes in the lymph nodes, thymus, and spleen, enhanced IFNγ production, and decreased Tregs in the tumor which was associated with a significant increase in survival. NT-I7 also enhanced central memory and effector memory CD8 T cells in lymphoid organs and tumor. Depleting CD8 T cells abrogated the effects of NT-I7. Furthermore, NT-I7 treatment decreased progenitor cells in the bone marrow. CONCLUSIONS: In orthotopic glioma-bearing mice, NT-I7 mitigates RT-related lymphopenia, increases cytotoxic CD8 T lymphocytes systemically and in the tumor, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Lymphopenia , Animals , Brain Neoplasms/pathology , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Models, Animal , Glioma/pathology , Humans , Immunologic Factors/pharmacology , Interleukin-7 , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins , T-Lymphocytes, Cytotoxic/pathology , Temozolomide/pharmacology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...