Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 54(3): e2350774, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38299456

ABSTRACT

The structure and dynamics of F-actin networks in the cortical area of B cells control the signal efficiency of B-cell antigen receptors (BCRs). Although antigen-induced signaling has been studied extensively, the role of cortical F-actin in antigen-independent tonic BCR signaling is less well understood. Because these signals are essential for the survival of B cells and are consequently exploited by several B-cell lymphomas, we assessed how the cortical F-actin structure influences tonic BCR signal transduction. We employed genetic variants of a primary cell-like B-cell line that can be rendered quiescent to show that cross-linking of actin filaments by α-actinin-4 (ACTN4), but not ACTN1, is required to preserve the dense architecture of F-actin in the cortical area of B cells. The reduced cortical F-actin density in the absence of ACTN4 resulted in increased lateral BCR diffusion. Surprisingly, this was associated with reduced tonic activation of BCR-proximal effector proteins, extracellular signal-regulated kinase, and pro-survival pathways. Accordingly, ACTN4-deficient B-cell lines and primary human B cells exhibit augmented apoptosis. Hence, our findings reveal that cortical F-actin architecture regulates antigen-independent tonic BCR survival signals in human B cells.


Subject(s)
Actins , Receptors, Antigen, B-Cell , Humans , Actinin/metabolism , Actins/metabolism , B-Lymphocytes , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
2.
Haematologica ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37916396

ABSTRACT

Burkitt lymphoma cells (BL) exploit antigen-independent tonic signals transduced by the B cell antigen receptor (BCR) for their survival, but the molecular details of the rewired BLspecific BCR signal network remain unclear. A loss of function screen revealed the SH2 domain-containing 5`-inositol phosphatase 2 (SHIP2) as a potential modulator of BL fitness. We characterized the role of SHIP2 in BL survival in several BL cell models and show that perturbing SHIP2 function renders cells more susceptible to apoptosis, while attenuating proliferation in a BCR-dependent manner. Unexpectedly, SHIP2 deficiency did neither affect PI3K survival signals nor MAPK activity, but attenuated ATP production. We found that an efficient energy metabolism in BL cells requires phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2), which is the enzymatic product of SHIP proteins. Consistently, interference with the function of SHIP1 and SHIP2 augments BL cell susceptibility to PI3K inhibition. Notably, we here provide a molecular basis of how tonic BCR signals are connected to energy supply, which is particularly important for such an aggressively growing neoplasia. These findings may help to improve therapies for the treatment of BL by limiting energy metabolism through the inhibition of SHIP proteins, which renders BL cells more susceptible to the targeting of survival signals.

3.
Life Sci ; 287: 120065, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34678263

ABSTRACT

AIMS: Despite continuous improvement in the treatment of acute leukemia, new therapies are still needed to overcome resistance and reduce adverse effects. The aim of this work was to study the tumor-suppressive effects of 4-methylumbelliferone (4MU) in human acute leukemia cell lines. In addition, we aimed to address the extent of these effects in relation to the inhibition of hyaluronic acid (HA) synthesis. MAIN METHODS: HA levels were measured by an ELISA-like assay. Human acute leukemia cell lines were treated with 4MU, HA or their combination. Cell proliferation was assessed by the [3H]-Tdr uptake assay, metabolic activity by the XTT assay and cell death was determined by DAPI, AO/EB and AnnexinV-PE/7-AAD staining. Senescence induction was evaluated by SA-ß-Gal and C12FDG staining. Total and surface RHAMM expression levels were assessed by flow cytometry and fluorescence microscopy. KEY FINDINGS: 4MU reduced metabolic activity and inhibited cell proliferation in all leukemia cells, and these effects were explained by the induction of senescence or cell death depending on the cell line evaluated. Exogenous HA failed to prevent most of the tumor-suppressive effects observed. Results from this work suggest that the tumor-suppressive effects exerted by 4MU would be explained by HA-synthesis-independent mechanisms. SIGNIFICANCE: These findings broaden the knowledge of 4MU as a potential treatment in acute leukemia. We report for the first time the existence of tumor-suppressive effects of 4MU on human acute leukemia cell lines that are independent of its role as HA-synthesis inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Hyaluronic Acid/biosynthesis , Hymecromone/pharmacology , Leukemia, Myeloid, Acute/metabolism , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Dose-Response Relationship, Drug , Humans , Hymecromone/therapeutic use , Jurkat Cells , Leukemia, Myeloid, Acute/drug therapy , U937 Cells
4.
Cell Death Differ ; 28(11): 3161-3175, 2021 11.
Article in English | MEDLINE | ID: mdl-34088983

ABSTRACT

Despite the identification of several genetic factors linked to increased susceptibility to inflammatory bowel disease (IBD), underlying molecular mechanisms remain to be elucidated in detail. The ubiquitin ligases RNF20 and RNF40 mediate the monoubiquitination of histone H2B at lysine 120 (H2Bub1) and were shown to play context-dependent roles in the development of inflammation. Here, we aimed to examine the function of the RNF20/RNF40/H2Bub1 axis in intestinal inflammation in IBD patients and mouse models. For this purpose, intestinal sections from IBD patients were immunohistochemically stained for H2Bub1. Rnf20 or Rnf40 were conditionally deleted in the mouse intestine and mice were monitored for inflammation-associated symptoms. Using mRNA-seq and chromatin immunoprecipitation (ChIP)-seq, we analyzed underlying molecular pathways in primary intestinal epithelial cells (IECs) isolated from these animals and confirmed these findings in IBD resection specimens using ChIP-seq.The majority (80%) of IBD patients displayed a loss of H2Bub1 levels in inflamed areas and the intestine-specific deletion of Rnf20 or Rnf40 resulted in spontaneous colorectal inflammation in mice. Consistently, deletion of Rnf20 or Rnf40 promoted IBD-associated gene expression programs, including deregulation of various IBD risk genes in these animals. Further analysis of murine IECs revealed that H3K4me3 occupancy and transcription of the Vitamin D Receptor (Vdr) gene and VDR target genes is RNF20/40-dependent. Finally, these effects were confirmed in a subgroup of Crohn's disease patients which displayed epigenetic and expression changes in RNF20/40-dependent gene signatures. Our findings reveal that loss of H2B monoubiquitination promotes intestinal inflammation via decreased VDR activity thereby identifying RNF20 and RNF40 as critical regulators of IBD.


Subject(s)
Inflammatory Bowel Diseases/genetics , Receptors, Calcitriol/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Inflammatory Bowel Diseases/pathology , Mice , Protein Processing, Post-Translational , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...