Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
BMC Vet Res ; 20(1): 183, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720324

ABSTRACT

BACKGROUND: Pigs are susceptible to several ruminant pathogens, including Coxiella burnetti, Schmallenberg virus (SBV) and bovine viral diarrhea virus (BVDV). These pathogens have already been described in the pig population, although the dynamics of the infection and the impact on pig farms are currently unclear. The aim of this work was to evaluate the presence of these infections in the pig population of the Campania region, southern Italy, and to evaluate the risk factors associated with a greater risk of exposure. RESULTS: A total of 414 serum samples belonging to 32 herds were tested for the presence of antibodies against SBV, Coxiella, and BVD using commercial multispecies ELISA kits. SBV (5.3%) was the most prevalent pathogen, followed by Coxiella (4.1%) and BVD (3%). The risk factors included in the study (age, sex, province, farming system, ruminant density and major ruminant species) had no influence on the probability of being exposed to BVD and Coxiella, except for the location, in fact more pigs seropositive to Coxiella were found in the province of Caserta. However, the univariate analysis highlighted the influence of age, location, and sex on exposure to SBV. The subsequent multivariate analysis statistically confirmed the importance of these factors. The presence of neutralizing antibodies for SBV and BVDV, or antibodies directed towards a specific phase of infection for Coxiella was further confirmed with virus-neutralization assays and phase-specific ELISAs in a large proportion of positive samples. The presence of high neutralizing antibody titers (especially for SBV) could indicate recent exposures. Twelve of the 17 positive samples tested positive for antibodies against Coxiella phase I or II antigens, indicating the presence of both acute and chronic infections (one animal tested positive for both phases antibodies). CONCLUSIONS: Our study indicates a non-negligible exposure of pigs from southern Italy to the above pathogens. Further studies are necessary to fully understand the dynamics of these infections in pigs, the impact on productivity, and the public health consequences in the case of Coxiella.


Subject(s)
Antibodies, Viral , Q Fever , Swine Diseases , Animals , Italy/epidemiology , Seroepidemiologic Studies , Swine , Risk Factors , Swine Diseases/epidemiology , Swine Diseases/microbiology , Swine Diseases/virology , Q Fever/epidemiology , Q Fever/veterinary , Female , Male , Antibodies, Viral/blood , Diarrhea Viruses, Bovine Viral/immunology , Antibodies, Bacterial/blood , Orthobunyavirus/immunology , Orthobunyavirus/isolation & purification , Coxiella burnetii/immunology , Coxiella burnetii/isolation & purification , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Pseudorabies/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary
2.
J Pept Sci ; 30(7): e3593, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38471710

ABSTRACT

In recent decades, the global rise of viral emerging infectious diseases has posed a substantial threat to both human and animal health worldwide. The rapid spread and accumulation of mutations into viruses, and the limited availability of antiviral drugs and vaccines, stress the urgent need for alternative therapeutic strategies. Antimicrobial peptides (AMPs) derived from natural sources present a promising avenue due to their specificity and effectiveness against a broad spectrum of pathogens. The present study focuses on investigating the antiviral potential of oreochromicin-1 (oreoch-1), a fish-derived AMP obtained from Nile tilapia, against a wide panel of animal viruses including canine distemper virus (CDV), Schmallenberg virus (SBV), caprine herpesvirus 1 (CpHV-1), and bovine herpesvirus 1 (BoHV-1). Oreoch-1 exhibited a strong antiviral effect, demonstrating an inhibition of infection at concentrations in the micromolar range. The mechanism of action involves the interference with viral entry into host cells and a direct interaction between oreoch-1 and the viral envelope. In addition, we observed that the peptide could also interact with the cell during the CDV infection. These findings not only highlight the efficacy of oreoch-1 in inhibiting viral infection but also emphasize the potential of fish-derived peptides, specifically oreoch-1, as effective antiviral agents against viral infections affecting animals, whose potential to spill into humans is high. This research contributes valuable insights to the ongoing quest for novel antiviral drugs with the potential to mitigate the impact of infectious diseases on a global scale.


Subject(s)
Antiviral Agents , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , Microbial Sensitivity Tests , Chlorocebus aethiops , Virus Internalization/drug effects
3.
Acta Vet Scand ; 66(1): 9, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443949

ABSTRACT

Monitoring disease among wildlife is critical to preserving health in both domestic animals and wildlife, and it becomes much more critical when the diseases cause significant economic damage to the livestock industry or threaten public health. Given the continuous increase in populations and its role as a reservoir for several infections, wild boar (Sus scrofa) requires special attention regarding disease surveillance and monitoring. In this study, we investigated the molecular prevalence of selected pathogens in the wild boar population of Campania, southern Italy. The prevalence of pathogens causing reproductive problems in pigs (Sus domesticus), including porcine parvovirus (PPV), porcine circovirus types 2 and 3 (PCV-2 and PCV-3), pseudorabies virus (PRV), Coxiella burnetii, and Brucella suis, was evaluated by testing the reproductive organs collected from 63 wild boars with polymerase chain reaction. The most common pathogens were PPV (44.4%) and two porcine circoviruses (14.3%). PRV and C. burnetii, on the other hand, showed a significantly lower prevalence (1.6%). No reproductive organs tested were positive for B. suis. Risk factor analysis revealed a correlation between age and PCV-2 positivity, with animals less than 12 months old having significantly higher prevalence rates.Our findings suggest that wild boars hunted in the Campania region harbour several infections potentially transmissible to other mammals' reproductive tracts. Furthermore, our results emphasized the importance of strict adherence to biosecurity protocols on domestic swine farms, especially on free-range farms, to avoid interactions between domestic and wild animals.


Subject(s)
Animals, Domestic , Brucella suis , Animals , Swine , Animals, Wild , Italy/epidemiology , Sus scrofa
4.
Sci Data ; 11(1): 220, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374088

ABSTRACT

Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB, 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB. This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of this disease.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology
5.
Prev Vet Med ; 224: 106116, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38271923

ABSTRACT

There is sufficient evidence that both bovine herpesvirus (BoHV-1) and bubaline herpesvirus (BuHV-1) can overcome the species barrier represented by their respective hosts, cattle and buffalo. Although several studies have focused on the impact of BoHV-1 on buffalo, little is known about the impact of BuHV-1 on cattle. In this work, we evaluated the seroprevalence of BuHV-1 in the cattle population in an area where intensive buffalo farming is highly developed (Campania region, Italy). BuHV-1 seroprevalence of cattle sampled in this study was estimated to be 21.4% using a specific commercial ELISA for the detection of antibodies against glycoprotein E of the virus. Risk factor assessment by univariate analysis revealed a correlation between housing type and higher prevalence. Similarly, cattle housed with buffalo and adult animals had a higher likelihood of being seropositive. BoHV-1 vaccination did not prove to be a protective factor against BuHV-1 exposure. The role of age, grazing, and co-living with buffalo in influencing BuHV-1 exposure was also confirmed by multivariate analysis. All BuHV-1 positive animals were also tested with cross-serum neutralization aimed at evaluating the specific antibody titers against BoHV-1 and BuHV-1. We, therefore, assessed the potential cross-reaction between BoHV-1 and BuHV-1, the co-infection rate, and the agreement of the assays used. This study described the presence of BuHV-1 in the cattle population of the Campania region (Italy) and indicated the requirement to take BuHV-1 into consideration for any measures and control and/or eradication plans to be applied against BoHV-1.


Subject(s)
Bison , Cattle Diseases , Herpesviridae Infections , Herpesviridae , Herpesvirus 1, Bovine , Animals , Cattle , Herpesviridae Infections/epidemiology , Herpesviridae Infections/veterinary , Buffaloes , Seroepidemiologic Studies , Cattle Diseases/epidemiology , Antibodies, Viral
6.
Vet Res Commun ; 48(1): 579-584, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37682447

ABSTRACT

Bluetongue is an arthropod-borne viral infection that is notifiable in several countries and causes significant economic losses and major concerns for ruminant trade. In this study, we investigated bluetongue 1seroprevalence in the Campania region, southern Italy, in cattle and buffalo populations, and assessed which factors were correlated with a high risk of exposure. The infection was widespread, as evidenced by the high individual (43.6%) and herd prevalence (85.4%). The highest prevalence was found in adult animals. Among the climatic factors analyzed, average temperature played a prominent role, being capable of affecting the probability of being positive for this infection. Surprisingly, exposure to Schmallenberg virus did not predispose animals to be positive for bluetongue virus, even though these infections share the same vector (Culicoides). Our data, consistent with those in the literature, suggest the transversal spread of bluetongue virus in the Mediterranean area, and indicate a limited co-exposure rate between Bluetongue and Schmallenberg viruses.


Subject(s)
Bluetongue virus , Bluetongue , Sheep Diseases , Sheep , Animals , Cattle , Buffaloes , Bluetongue/epidemiology , Seroepidemiologic Studies , Italy/epidemiology
7.
Virol J ; 20(1): 295, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087282

ABSTRACT

BACKGROUND: Although FeHV-1 is a primary feline pathogen, little is known about its interactions with host cells. Its relationship with several cellular pathways has recently been described, whereas its interplay with the apoptotic process, unlike other herpesviruses, has not yet been clarified. The aim of this work was to evaluate whether FeHV-1 induces apoptosis in its permissive cells, as well as the pathway involved and the effects of induction and inhibition of apoptosis on viral replication. METHODS: Monolayers of CRFK cells were infected at different times with different viral doses. A cytofluorimetric approach allowed the quantification of cells in early and late apoptosis. All infections and related controls were also subjected to Western blot analysis to assess the expression of apoptotic markers (caspase 3-8-9, Bcl-2, Bcl-xL, NF-κB). An inhibitor (Z-VAD-FMK) and an inducer (ionomycin) were used to evaluate the role of apoptosis in viral replication. Finally, the expression of autophagy markers during the apoptosis inhibition/induction and the expression of apoptosis markers during autophagy inhibition/induction were evaluated to highlight any crosstalk between the two pathways. RESULTS: FeHV-1 triggered apoptosis in a time- and dose-dependent manner. Caspase 3 cleavage was evident 48 h after infection, indicating the completeness of the process at this stage. While caspase 8 was not involved, caspase 9 cleavage started 24 h post-infection. The expression of other mitochondrial damage markers also changed, suggesting that apoptosis was induced via the intrinsic pathway. NF- κB was up-regulated at 12 h, followed by a gradual decrease in levels up to 72 h. The effects of apoptosis inhibitors and inducers on viral replication and autophagy were also investigated. Inhibition of caspases resulted in an increase in viral glycoprotein expression, higher titers, and enhanced autophagy, whereas induction of apoptosis resulted in a decrease in viral protein expression, lower viral titer, and attenuated autophagy. On the other hand, the induction of autophagy reduced the cleavage of caspase 3. CONCLUSIONS: In this study, we established how FeHV-1 induces the apoptotic process, contributing to the understanding of the relationship between FeHV-1 and this pathway.


Subject(s)
Apoptosis , Caspases , Cats , Animals , Caspase 3 , Caspases/metabolism , Apoptosis Regulatory Proteins , NF-kappa B/metabolism , Autophagy
8.
J Vet Diagn Invest ; 35(6): 721-726, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37705242

ABSTRACT

The detection of Coxiella burnetii in ruminants remains challenging despite the use of new technology and the accumulation of novel knowledge. Serology tools, the primary methods of infection surveillance in veterinary medicine, have limitations. We used recombinant antigen production to develop an ELISA based on the SucB protein, one of the major immunodominant antigens described in humans and laboratory animals. We produced the antigen successfully in an Escherichia coli heterologous system, confirmed by sequencing and mass spectrometry, and seen as a band of ~50 kDa in SDS-PAGE and on western blot analysis. We compared the performance of the recombinant ELISA with a commercial ELISA. We observed agreement of 83.5% and a substantial Cohen κ value of 0.67 in our pilot study.


Subject(s)
Coxiella burnetii , Q Fever , Humans , Animals , Q Fever/diagnosis , Q Fever/veterinary , Q Fever/epidemiology , Coxiella , Pilot Projects , Coxiella burnetii/genetics , Ruminants
9.
Viruses ; 15(9)2023 08 24.
Article in English | MEDLINE | ID: mdl-37766211

ABSTRACT

Given the emergence of the coronavirus disease 2019 (COVID-19), zoonoses have raised in the spotlight of the scientific community. Animals have a pivotal role not only for this infection, but also for many other recent emerging and re-emerging viral diseases, where they may represent both intermediate hosts and/or vectors for zoonoses diffusion. Today, roughly two-thirds of human infections are derived from animal origins; therefore, the search for new broad-spectrum antiviral molecules is mandatory to prevent, control and eradicate future epidemic outbreaks. Host defense peptides, derived from skin secretions of amphibians, appear as the right alternative to common antimicrobial drugs. They are cationic peptides with an amphipathic nature widely described as antibacterial agents, but less is reported about their antiviral potential. In the present study, we evaluated the activity of five amphibian peptides, namely RV-23, AR-23, Hylin-a1, Deserticolin-1 and Hylaseptin-P1, against a wide panel of enveloped animal viruses. A strong virucidal effect was observed for RV-23, AR-23 and Hylin-a1 against bovine and caprine herpesviruses, canine distemper virus, bovine viral diarrhea virus, and Schmallenberg virus. Our results identified these three peptides as potential antiviral-led candidates with a putative therapeutic effect against several animal viruses.


Subject(s)
COVID-19 , Viruses , Animals , Humans , Goats , Zoonoses/prevention & control , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/pharmacology
10.
Front Vet Sci ; 10: 1174681, 2023.
Article in English | MEDLINE | ID: mdl-37397000

ABSTRACT

FeHV-1 is a member of the Herpesviridae family that is distributed worldwide and causes feline viral rhinotracheitis (FVR). Since its relationship with the autophagic process has not yet been elucidated, the aim of this work was to evaluate the autophagy mediated by FeHV-1 and to determine its proviral or antiviral role. Our data showed that autophagy is induced by FeHV-1 in a viral dose and time-dependent manner. Phenotypic changes in LC3/p62 axis (increase of LC3-II and degradation of p62) were detected from 12 h post infection using western blot and immuno-fluorescence assays. In a second step, by using late autophagy inhibitors and inducers, the possible proviral role of autophagy during FeHV-1 infection was investigating by assessing the effects of each chemical in terms of viral yield, cytotoxic effects, and expression of viral glycoproteins. Our findings suggest that late-stage autophagy inhibitors (bafilomycin and chloroquine) have a negative impact on viral replication. Interestingly, we observed an accumulation of gB, a viral protein, when cells were pretreated with bafilomycin, whereas the opposite effect was observed when an autophagy inducer was used. The importance of autophagy during FeHV-1 infection was further supported by the results obtained with ATG5 siRNA. In summary, this study demonstrates FeHV-1-mediated autophagy induction, its proviral role, and the negative impact of late autophagy inhibitors on viral replication.

11.
BMC Vet Res ; 19(1): 95, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507724

ABSTRACT

BACKGROUND: Schmallenberg virus (SBV) is a vector-borne pathogen that mainly affects ruminants. Schmallenberg disease has never been described in southern Italy, although this geographic area displays climatic features suitable for Culicoides biting midges, which transmit the pathogen. An observational study was carried out in the Campania region in 2020 to evaluate the seroprevalence in cattle and water buffalo as well as to identify the risk factors involved in the distribution of SBV. RESULTS: Relatively high seroprevalences of 38.2% (cattle) and 43% (water buffalo) were found by using a commercial SBV ELISA, which is comparable to the prevalence obtained in other countries under post-epidemic conditions. A virus neutralization assay performed on positive samples showed high titers in a large percentage of animals which is assumed to indicate recent exposure. Bivariate analysis of several variables revealed some environmental factors associated with higher seroprevalence, such as mean annual temperature, distance from the coast, and altitude. Multivariate logistic regression confirmed the statistical association only for mean annual temperature, that was found to be the main factor responsible for the distribution of the virus in southern Italy. In addition, molecular diagnosis attempts were performed on serum samples and resulted in the detection of SBV RNA in two herds and six animals. CONCLUSIONS: In this work we have demonstrated the circulation of SBV in southern Italy using both molecular and serological assays. This study emphasized the essential role of monitoring in preventing the re-emergence of vector-borne diseases in ruminants.


Subject(s)
Bunyaviridae Infections , Cattle Diseases , Ceratopogonidae , Orthobunyavirus , Virus Diseases , Cattle , Animals , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Buffaloes , Seroepidemiologic Studies , Antibodies, Viral , Cattle Diseases/epidemiology , Virus Diseases/veterinary
12.
Acta Vet Scand ; 65(1): 35, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452391

ABSTRACT

The expansion of urbanization in natural environments increases interactions between wildlife, domestic animals, and humans. In Italy, the red fox (Vulpes vulpes) is one of the most common wild carnivores. This species can serve as a reservoir and sentinel host for several infectious diseases. We aimed to improve knowledge about the exposure of red foxes to selected zoonotic (Anaplasma spp, Ehrlichia spp., Borrelia spp., and hepatitis E virus) and carnivore-specific pathogens (canine parvovirus, canine distemper virus, pseudorabies virus, and Dirofilaria spp.) through a retrospective survey performed in the Tuscany region during the spring season of 2013. Using specific ELISAs and serum samples (n = 38) collected during a culling campaign, a prevalence of 2.6% for canine distemper virus, 18.4% for canine parvovirus, 5.2% for Anaplasma spp., 2.6% for Ehrlichia spp., 7.9% for Dirofilaria spp., 21.05% for hepatitis E virus, and 10.5% for pseudorabies virus was observed. Conversely, antibodies against Borrelia spp. were not identified in any of the animals. Our results revealed no significant sex-related differences in seroprevalence and confirmed hepatitis E virus as the most common pathogen in the analyzed samples. All of the animals that tested positive for tick-borne zoonotic agents presented ticks at the time of sampling. Our study confirms the exposure of red foxes in the Tuscany region to viral and bacterial infections raising medical and veterinary concern and indicating the need for large-scale surveillance to fully assess the epidemiological significance of these findings.


Subject(s)
Animals, Domestic , Foxes , Humans , Animals , Seroepidemiologic Studies , Retrospective Studies , Anaplasma
13.
Front Vet Sci ; 10: 1157350, 2023.
Article in English | MEDLINE | ID: mdl-37026095

ABSTRACT

FeHV-1 is the causative agent of infectious rhinotracheitis in cats. The relationship between viral infection and the PI3K/Akt/mTOR pathway, as well as its function in crucial physiological processes like as autophagy, apoptosis or the IFN induction cascade is known for other varicelloviruses. However, there is no information on whether autophagy is activated during FeHV-1 infection nor on how this infection modifies PI3K/Akt/mTOR pathway. In this work, we aim to elucidate the involvement of this pathway during cytolytic infection by FeHV-1 in permissive cell lines. Using a phenotypic approach, the expression of proteins involved in the PI3K/Akt/mTOR pathway was examined by Western blot analysis. The findings demonstrated the lack of modifications in relation to viral dose (except for phospho-mTOR), whereas there were changes in the expression of several markers in relation to time as well as a mismatch in the time of activation of this axis. These results suggest that FeHV-1 may interact independently with different autophagic signaling pathways. In addition, we found an early phosphorylation of Akt, approximately 3 h after infection, without a concomitant decrease in constitutive Akt. This result suggests a possible role for this axis in viral entry. In a second phase, the use of early autophagy inhibitors was examined for viral yield, cytotoxic effects, viral glycoprotein expression, and autophagy markers and resulted in inefficient inhibition of viral replication (12 h post-infection for LY294002 and 48 h post-infection for 3-methyladenine). The same markers were examined during Akt knockdown, and we observed no differences in viral replication. This result could be explained by the presence of a protein kinase in the FeHV-1 genome (encoded by the Us3 gene) that can phosphorylate various Akt substrates as an Akt surrogate, as has already been demonstrated in genetically related viruses (HSV-1, PRV, etc.). For the same reasons, the use of LY294002 at the beginning of infection did not affect FeHV-1-mediated Akt phosphorylation. Our findings highlight changes in the PI3K/Akt/mTOR pathway during FeHV-1 infection, although further research is needed to understand the importance of these changes and how they affect cellular processes and viral propagation.

14.
Animals (Basel) ; 13(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36899629

ABSTRACT

Cattle and water buffalo are the main livestock species that are raised in the Campania region, southern Italy, and they contribute significantly to the regional rural economy. Currently there are limited data on the prevalence of relevant impact infections, such as bovine coronavirus (BCov), an RNA virus that causes acute enteric and respiratory disease. Although these diseases are described primarily in cattle, there have been reports of spillovers to other ruminants, including water buffalo. Here, we determined the seroprevalence of BCoV in cattle and water buffalo in the Campania region of southern Italy. An overall seroprevalence of 30.8% was determined after testing 720 sampled animals with a commercial enzyme-linked immunosorbent assay. A risk factor analysis revealed that the seropositivity rates in cattle (49.2%) were higher than in water buffalo (5.3%). In addition, higher seroprevalence rates were observed in older and purchased animals. In cattle, housing type and location were not associated with higher seroprevalence. The presence of BCoV antibodies in water buffalo was associated with the practice of co-inhabiting with cattle, demonstrating that this practice is incorrect and promotes the transmission of pathogens between different species. Our study found a considerable seroprevalence, which is consistent with previous research from other countries. Our results provide information on the widespread distribution of this pathogen as well as the risk factors that are involved in its transmission. This information could be useful in the control and surveillance of this infection.

15.
Viruses ; 15(2)2023 01 20.
Article in English | MEDLINE | ID: mdl-36851514

ABSTRACT

Porcine coronaviruses and reproductive and respiratory syndrome (PRRS) are responsible for severe outbreaks that cause huge economic losses worldwide. In Italy, three coronaviruses have been reported historically: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Although repeated outbreaks have been described, especially in northern Italy, where intensive pig farming is common, there is a worrying lack of information on the spread of these pathogens in Europe. In this work, we determined the seroprevalence of three porcine coronaviruses and PRRSV in the Campania region, southern Italy. A total of 443 samples were tested for the presence of antibodies against porcine coronaviruses and PRRSV using four different commercial ELISAs. Our results indicated that PEDV is the most prevalent among porcine coronaviruses, followed by TGEV, and finally PRCV. PRRSV appeared to be the most prevalent virus (16.7%). For coronaviruses, seroprevalence was higher in pigs raised in intensive farming systems. In terms of distribution, TGEV is more widespread in the province of Avellino, while PEDV and PRRSV are more prevalent in the province of Naples, emphasizing the epidemic nature of both infections. Interestingly, TGEV-positive animals are more common among growers, while seropositivity for PEDV and PRRSV was higher in adults. Our research provides new insights into the spread of swine coronaviruses and PRRSV in southern Italy, as well as a warning about the need for viral surveillance.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine Reproductive and Respiratory Syndrome , Porcine Respiratory Coronavirus , Porcine epidemic diarrhea virus , Porcine respiratory and reproductive syndrome virus , Transmissible gastroenteritis virus , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/epidemiology , Seroepidemiologic Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Italy/epidemiology
16.
J Wildl Dis ; 58(4): 887-891, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36342369

ABSTRACT

The growing interest in porcine coronaviruses (CoVs) is due to both their negative effect on the swine industry and their propensity to mutate and overcome host barriers. Since information on CoVs in wild boar (Sus scrofa) is limited, especially in Italy, a serosurvey was conducted to assess the epidemiologic situation in the Campania region and to clarify the role of wild boar as reservoirs for enteric (porcine epidemic diarrhea virus [PEDV], transmissible gastroenteritis virus [TGEV]) and respiratory (respiratory coronavirus [PRCV]) swine CoVs. During the 2016-17 hunting season, serum samples were collected from 444 wild boars and tested for antibodies to enteric (PEDV, TGEV) and respiratory (PRCV) porcine CoVs by enzyme-linked immunosorbent assay. The highest seroprevalence in wild boars was for PEDV, with a positivity of 3.83% (95% confidence interval [CI] 2.05-5.6), whereas very low seroprevalences were found for TGEV and PRCV (0.67% positivity; 95% CI 0-1.44 in both cases). There was no statistical association between seropositivity to CoVs, sex, and location, whereas the prevalence of seropositive animals was positively correlated with young age (0-12 mo old). Our data confirm the presence of CoVs in wild boars in the Campania region. Our data are in agreement with the results of similar studies from other European countries, which attribute a minor role to wild boar in the transmission of these infections to domestic pigs. Our results suggest that continuous serologic surveys are necessary to monitor wild animals and detect emerging threats to livestock and humans.


Subject(s)
Coronavirus Infections , Coronavirus , Sus scrofa , Swine Diseases , Animals , Europe , Italy/epidemiology , Retrospective Studies , Seroepidemiologic Studies , Swine , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Porcine epidemic diarrhea virus , Transmissible gastroenteritis virus , Porcine Respiratory Coronavirus , Swine Diseases/epidemiology , Swine Diseases/virology
17.
Viruses ; 14(11)2022 11 21.
Article in English | MEDLINE | ID: mdl-36423192

ABSTRACT

From 2019 to 2021, a retrospective molecular study was conducted in the Campania region (southern Italy) to determine the prevalence of viral diseases in domestic cats. A total of 328 dead animals were analyzed by Real-Time PCR for the presence of feline panleukopenia virus (FPV), feline leukemia virus (FeLV), feline enteric coronavirus (FCoV), rotavirus (RVA), feline herpesvirus type 1 (FHV-1), and feline calicivirus (FCV). The possible presence of SARS-CoV-2 was also investigated by Real-Time PCR. The cats included in this study were specifically sourced and referred by local veterinarians and local authorities to the Zooprofilactic Experimental Institute of Southern Italy (IZSM) for pathological evaluation. The samples consisted of owners, catteries, and stray cats. Results revealed: 73.5% positive cats for FPV (189/257), 23.6% for FeLV (21/89), 21.5% for FCoV (56/266), 11.4% for RVA (16/140), 9.05% for FeHV-1 (21/232), and 7.04 for FCV (15/213). In contrast, SARS-CoV-2 was never detected. FPV was more prevalent in winter (p = 0.0027). FCoV FHV-1, FCV, and RVA predominated in autumn, whereas FeLV predominated in summer. As expected, viral infections were found more frequently in outdoor and shelter cats than in indoor ones, although no statistical association was found between animal lifestyle and viral presence. The study showed a high prevalence of FPV, FeLV, and FCoV and a moderate prevalence of RVA, FHV-1, and FCV. Moreover, the prevalence of these pathogens varied among the cat populations investigated.


Subject(s)
COVID-19 , Calicivirus, Feline , Coronavirus, Feline , Virus Diseases , Cats , Animals , Retrospective Studies , Prevalence , Antibodies, Viral , SARS-CoV-2/genetics , Feline Panleukopenia Virus , Leukemia Virus, Feline , Coronavirus, Feline/genetics , Virus Diseases/veterinary
18.
Pathogens ; 11(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015022

ABSTRACT

Due to its economic impact on livestock and its zoonotic effect, Q fever is a public and animal health problem. Information on this infection in Italy is presently supported by reports of reproductive problems in livestock farms and is, therefore, insufficient to properly understand the impact of the disease. This study aimed to describe for the first time the seroprevalence of Q fever in dairy cows and water buffalos in the Campania region (Southern Italy). A total of 424 dairy cattle and 214 water buffalo were tested using a commercial indirect ELISA kit. An overall seroprevalence of 11.7% confirmed the wide distribution of C. burnetii in this region. Several factors were positively associated with higher seroprevalence, such as species (higher in cattle than in water buffalo), age, and coexistence with other ruminant species. The final model of logistic regression included only age (older) and species (cattle), which were positively associated with the presence of Q fever antibodies. Our findings support the widespread presence of Coxiella burnettii in Campania and show a seroprevalence similar to that observed in previous studies in other Italian regions and European countries. Since human cases are typically linked to contact with infected ruminants, there is a need to improve surveillance for this infection.

19.
Animals (Basel) ; 12(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35681922

ABSTRACT

Following the COVID-19 epidemic outbreak in Ariano Irpino, Campania region (Italy), we tested lactating cows for the presence of SARS-CoV-2 on a cattle farm at which, prior to the investigation, 13 of the 20 farmworkers showed COVID-19-like symptoms, and one of them died. Twenty-four lactating cows were sampled to detect SARS-CoV-2. All nasal and rectal swabs and milk samples were negative for SARS-CoV-2 RNA. Of the 24 collected serum samples, 11 showed antibodies against SARS-CoV-2 nucleocapsid protein, 14 showed antibodies against SARS-CoV-2 spike protein, and 13 developed neutralising antibodies for SARS-COV-2; all samples were negative for Bovine Coronavirus (BCoV), another betacoronavirus. To our knowledge, this is the first report of natural serological evidence of SARS-CoV-2 infection in lactating cows. We hypothesise that this may be a case of reverse zoonosis. However, the role of cattle in SARS-CoV-2 infection and transmission seems to be negligible.

20.
J Vet Diagn Invest ; 34(4): 646-653, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35610946

ABSTRACT

Q fever remains a One Health problem, posing a zoonotic threat and causing significant economic losses to the livestock industry. The advancement of detection tools is critical to the effective control of infection. In humans, laboratory investigations depend largely on the immunofluorescence assay, considered the gold standard. In contrast, serologic tools routinely used for veterinary screening have several gaps, resulting in interpretations that are frequently misleading. We investigated the potential application of recombinant Ybgf antigen (r-Ybgf), a periplasmic protein described as one of the most immunodominant antigens in humans, in an indirect ELISA. Following successful expression in the prokaryotic system and the preliminary evaluation of immunoreactivity in western blot, we used r-Ybgf to develop an in-house ELISA using serum samples from sheep, goats, and cattle, which were tested in parallel with an Idexx ELISA kit. The results obtained with the 2 tests were compared, and r-Ybgf performed favorably, with 81.8% sensitivity and 90.1% specificity and substantial agreement, as revealed by receiver operating characteristic analysis. Moreover, we evaluated the serologic response against phase I (PhI) and phase II (PhII) antigens, and r-Ybgf antigen induced by vaccination, using phase-specific ELISAs. The dynamics of antibody response showed a significant increase in reactivity against PhI and PhII, but not against r-Ybgf, antigens. This property may be very useful given the absence of a protocol for the differentiation of infected from vaccinated animals.


Subject(s)
Coxiella burnetii , Goat Diseases , Q Fever , Animals , Cattle , Coxiella , Enzyme-Linked Immunosorbent Assay/veterinary , Goat Diseases/diagnosis , Goats , Q Fever/veterinary , Recombinant Proteins , Ruminants , Sensitivity and Specificity , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...