Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 125(26): 7311-7319, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34170692

ABSTRACT

Carbon nanothread-derived nanomeshes are highly flexible two-dimensional (2D) structures with tunable pore size and shape, which allows fine control of their transport properties when applied as membranes. In this work, we use molecular dynamics simulations to investigate the performance of several nanomesh structures as membranes for water desalination through reverse osmosis. Results show that these membranes can operate in a wide range of water flow rate, with an optimal point that yields 100% NaCl rejection and water permeability as high as 106 L·cm-2·day-1·MPa-1, higher than other nanoporous 2D materials reported in the literature. This promising performance is partially due to the elliptical pores of strained nanomeshes, which allow the passage of rotated water molecules while rejecting hydrated salt ions. Our results show that carbon nanothread-derived nanomeshes have great potential for application in water desalination processes and emphasize the importance of engineering pore shape in 2D materials when applied as reverse osmosis membranes.


Subject(s)
Membranes, Artificial , Water , Carbon , Osmosis , Sodium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...