Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 332(1-2): 253-60, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-21075169

ABSTRACT

Cumulative evidence demonstrated effective downstream metabolism of pregnenolone in renal tissue. The aim of this study was to evaluate the expression and functional activity of cytochrome P450 side chain cleavage enzyme (CYP11A1), which converts cholesterol into pregnenolone, in adult rat kidney. Immunohistochemical labeling for CYP11A1 was observed in renal cortex and medulla, on structures identified as distal convoluted tubule and thick ascending limb of Henle's loop, respectively. Immunoblotting analysis corroborated the renal expression of the protein in inner mitochondrial membrane fractions. The incubation of isolated mitochondria with the membrane-permeant cholesterol analogue 22R-hydroxycholesterol resulted in efficient formation of pregnenolone, the immediate precursor for the synthesis of all the steroid hormones. The low progesterone production rate observed in these experiments suggested a poor activity of 3ß-hydroxysteroid dehydrogenase enzyme in renal mitochondria. The steroidogenic acute regulatory protein (StAR), involved in the mitochondrial import of cholesterol, was detected in renal tissue at both mRNA and protein level. Immunostaining for StAR showed similar distribution to that observed for CYP11A1. The expression of StAR and CYP11A1 was found to be higher in medulla than in cortex. This enhanced expression of steroidogenesis-related proteins correlated with a greater pregnenolone synthesis rate and higher steroid hormones tissular content measured in medulla. In conclusion, we have established the expression and localization of StAR and CYP11A1 protein, the ability of synthesizing pregnenolone and a region-specific content of sex hormones in the adult rat kidney. These data clearly show that the kidney is a steroid hormones synthesizing organ. It is proposed that the existence in the kidney of complete steroidogenic machinery would respond to a physiological significance.


Subject(s)
Cholesterol Side-Chain Cleavage Enzyme/metabolism , Kidney/enzymology , Animals , Carrier Proteins/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Kidney/anatomy & histology , Male , Mitochondrial Membranes/enzymology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Pregnenolone/biosynthesis , Progesterone/biosynthesis , Rats , Rats, Wistar , Receptors, GABA-A/metabolism , Testosterone/metabolism
2.
Pediatr Nephrol ; 25(7): 1245-53, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20352459

ABSTRACT

Acetaminophen (APAP) is an analgesic-antipyretic drug widely used in children. In the present study, we used an in vivo model of APAP-induced nephrotoxicity in male Wistar rats. We analyzed whether toxic doses of APAP could induce heat shock protein 70 (HSP70) in the kidney and whether HSP70 could be detected in urine. Renal function and histological evaluation of the kidneys were performed at different times after APAP administration (1,000 mg/kg body weight i.p.). Cellular injury was assessed by Triton X-100 solubilization of Na(+)/K(+) ATPase. Renal and hepatic glutathione levels were also measured. Urinary N-acetyl-beta-D glucosaminidase (NAG) excretion increased 4 h after intoxication. At this time, urea and creatinine were at control levels and a slight degree of histological alteration was detected. Kidney microscopic evaluation, Na(+)/K(+) ATPase solubility, creatinine, and urea levels and NAG excretion did not differ from those of controls 48 h after APAP administration. HSP70 was detected in urine obtained from 4 to 24 h after APAP administration. HSP70 abundance in renal cortex was increased at early time points and 48 h after APAP administration. Urinary HSP70 excretion would be a marker of its renal induction combined with the loss of tubule integrity. NAG would be a suitable early biomarker of APAP-induced nephrotoxicity.


Subject(s)
Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , HSP70 Heat-Shock Proteins/biosynthesis , Kidney Diseases/metabolism , Acetylglucosaminidase/urine , Animals , Creatinine/blood , Disease Models, Animal , Glutathione/metabolism , HSP70 Heat-Shock Proteins/urine , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Function Tests , Liver/drug effects , Liver/metabolism , Male , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Urea/blood
SELECTION OF CITATIONS
SEARCH DETAIL